ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltnr GIF version

Theorem xrltnr 9848
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 9845 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ltnr 8098 . . 3 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
3 pnfnre 8063 . . . . . . . . . 10 +∞ ∉ ℝ
43neli 2461 . . . . . . . . 9 ¬ +∞ ∈ ℝ
54intnan 930 . . . . . . . 8 ¬ (+∞ ∈ ℝ ∧ +∞ ∈ ℝ)
65intnanr 931 . . . . . . 7 ¬ ((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞)
7 pnfnemnf 8076 . . . . . . . . 9 +∞ ≠ -∞
87neii 2366 . . . . . . . 8 ¬ +∞ = -∞
98intnanr 931 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ = +∞)
106, 9pm3.2ni 814 . . . . . 6 ¬ (((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞))
114intnanr 931 . . . . . . 7 ¬ (+∞ ∈ ℝ ∧ +∞ = +∞)
124intnan 930 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ ∈ ℝ)
1311, 12pm3.2ni 814 . . . . . 6 ¬ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))
1410, 13pm3.2ni 814 . . . . 5 ¬ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))
15 pnfxr 8074 . . . . . 6 +∞ ∈ ℝ*
16 ltxr 9844 . . . . . 6 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))))
1715, 15, 16mp2an 426 . . . . 5 (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))))
1814, 17mtbir 672 . . . 4 ¬ +∞ < +∞
19 breq12 4035 . . . . 5 ((𝐴 = +∞ ∧ 𝐴 = +∞) → (𝐴 < 𝐴 ↔ +∞ < +∞))
2019anidms 397 . . . 4 (𝐴 = +∞ → (𝐴 < 𝐴 ↔ +∞ < +∞))
2118, 20mtbiri 676 . . 3 (𝐴 = +∞ → ¬ 𝐴 < 𝐴)
22 mnfnre 8064 . . . . . . . . . 10 -∞ ∉ ℝ
2322neli 2461 . . . . . . . . 9 ¬ -∞ ∈ ℝ
2423intnan 930 . . . . . . . 8 ¬ (-∞ ∈ ℝ ∧ -∞ ∈ ℝ)
2524intnanr 931 . . . . . . 7 ¬ ((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞)
267nesymi 2410 . . . . . . . 8 ¬ -∞ = +∞
2726intnan 930 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ = +∞)
2825, 27pm3.2ni 814 . . . . . 6 ¬ (((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞))
2923intnanr 931 . . . . . . 7 ¬ (-∞ ∈ ℝ ∧ -∞ = +∞)
3023intnan 930 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ ∈ ℝ)
3129, 30pm3.2ni 814 . . . . . 6 ¬ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))
3228, 31pm3.2ni 814 . . . . 5 ¬ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))
33 mnfxr 8078 . . . . . 6 -∞ ∈ ℝ*
34 ltxr 9844 . . . . . 6 ((-∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))))
3533, 33, 34mp2an 426 . . . . 5 (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))))
3632, 35mtbir 672 . . . 4 ¬ -∞ < -∞
37 breq12 4035 . . . . 5 ((𝐴 = -∞ ∧ 𝐴 = -∞) → (𝐴 < 𝐴 ↔ -∞ < -∞))
3837anidms 397 . . . 4 (𝐴 = -∞ → (𝐴 < 𝐴 ↔ -∞ < -∞))
3936, 38mtbiri 676 . . 3 (𝐴 = -∞ → ¬ 𝐴 < 𝐴)
402, 21, 393jaoi 1314 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ¬ 𝐴 < 𝐴)
411, 40sylbi 121 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2164   class class class wbr 4030  cr 7873   < cltrr 7878  +∞cpnf 8053  -∞cmnf 8054  *cxr 8055   < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061
This theorem is referenced by:  xrltnsym  9862  xrltso  9865  xrlttri3  9866  xrleid  9869  xrltne  9882  nltpnft  9883  ngtmnft  9886  xrrebnd  9888  xposdif  9951  lbioog  9982  ubioog  9983  xrmaxleim  11390  xrmaxiflemlub  11394
  Copyright terms: Public domain W3C validator