ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanr GIF version

Theorem intnanr 925
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1 ¬ 𝜑
Assertion
Ref Expression
intnanr ¬ (𝜑𝜓)

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2 ¬ 𝜑
2 simpl 108 . 2 ((𝜑𝜓) → 𝜑)
31, 2mto 657 1 ¬ (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 609  ax-in2 610
This theorem is referenced by:  rab0  3443  co02  5124  frec0g  6376  djulclb  7032  xrltnr  9736  pnfnlt  9744  nltmnf  9745  0g0  12630  if0ab  13840
  Copyright terms: Public domain W3C validator