ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanr GIF version

Theorem intnanr 931
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1 ¬ 𝜑
Assertion
Ref Expression
intnanr ¬ (𝜑𝜓)

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2 ¬ 𝜑
2 simpl 109 . 2 ((𝜑𝜓) → 𝜑)
31, 2mto 663 1 ¬ (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  rab0  3476  co02  5180  frec0g  6452  djulclb  7116  xrltnr  9848  pnfnlt  9856  nltmnf  9857  0g0  12962  if0ab  15367
  Copyright terms: Public domain W3C validator