![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnanr | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 663 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
This theorem is referenced by: rab0 3475 co02 5179 frec0g 6450 djulclb 7114 xrltnr 9845 pnfnlt 9853 nltmnf 9854 0g0 12959 if0ab 15297 |
Copyright terms: Public domain | W3C validator |