Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnanr | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 108 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 657 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 609 ax-in2 610 |
This theorem is referenced by: rab0 3443 co02 5124 frec0g 6376 djulclb 7032 xrltnr 9736 pnfnlt 9744 nltmnf 9745 0g0 12630 if0ab 13840 |
Copyright terms: Public domain | W3C validator |