| Step | Hyp | Ref
| Expression |
| 1 | | subctctexmid.x |
. . . . 5
⊢ (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o))) |
| 2 | | omex 4629 |
. . . . . . . 8
⊢ ω
∈ V |
| 3 | 2 | rabex 4177 |
. . . . . . 7
⊢ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈
V |
| 4 | 3 | a1i 9 |
. . . . . 6
⊢ (𝜑 → {𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V) |
| 5 | | ssrab2 3268 |
. . . . . . 7
⊢ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆
ω |
| 6 | | f1oi 5542 |
. . . . . . . . 9
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝑦 =
{∅}}):{𝑧 ∈
ω ∣ 𝑦 =
{∅}}–1-1-onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} |
| 7 | | f1ofo 5511 |
. . . . . . . . 9
⊢ (( I
↾ {𝑧 ∈ ω
∣ 𝑦 =
{∅}}):{𝑧 ∈
ω ∣ 𝑦 =
{∅}}–1-1-onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} → ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝑦 =
{∅}}):{𝑧 ∈
ω ∣ 𝑦 =
{∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} |
| 9 | | resiexg 4991 |
. . . . . . . . . 10
⊢ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V → (
I ↾ {𝑧 ∈ ω
∣ 𝑦 = {∅}})
∈ V) |
| 10 | 3, 9 | ax-mp 5 |
. . . . . . . . 9
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝑦 = {∅}})
∈ V |
| 11 | | foeq1 5476 |
. . . . . . . . 9
⊢ (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) → (𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})) |
| 12 | 10, 11 | spcev 2859 |
. . . . . . . 8
⊢ (( I
↾ {𝑧 ∈ ω
∣ 𝑦 =
{∅}}):{𝑧 ∈
ω ∣ 𝑦 =
{∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} →
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) |
| 13 | 8, 12 | ax-mp 5 |
. . . . . . 7
⊢
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} |
| 14 | 5, 13 | pm3.2i 272 |
. . . . . 6
⊢ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω
∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) |
| 15 | | sseq1 3206 |
. . . . . . . 8
⊢ (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑠 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆
ω)) |
| 16 | | foeq2 5477 |
. . . . . . . . 9
⊢ (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})) |
| 17 | 16 | exbidv 1839 |
. . . . . . . 8
⊢ (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})) |
| 18 | 15, 17 | anbi12d 473 |
. . . . . . 7
⊢ (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) ↔ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))) |
| 19 | 18 | spcegv 2852 |
. . . . . 6
⊢ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V →
(({𝑧 ∈ ω ∣
𝑦 = {∅}} ⊆
ω ∧ ∃𝑓
𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))) |
| 20 | 4, 14, 19 | mpisyl 1457 |
. . . . 5
⊢ (𝜑 → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})) |
| 21 | | foeq3 5478 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑓:𝑠–onto→𝑥 ↔ 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})) |
| 22 | 21 | exbidv 1839 |
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑓 𝑓:𝑠–onto→𝑥 ↔ ∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})) |
| 23 | 22 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) ↔ (𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))) |
| 24 | 23 | exbidv 1839 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) ↔ ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))) |
| 25 | | djueq1 7106 |
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 26 | | foeq3 5478 |
. . . . . . . . 9
⊢ ((𝑥 ⊔ 1o) =
({𝑧 ∈ ω ∣
𝑦 = {∅}} ⊔
1o) → (𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o))) |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o))) |
| 28 | 27 | exbidv 1839 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o))) |
| 29 | 24, 28 | imbi12d 234 |
. . . . . 6
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)) ↔
(∃𝑠(𝑠 ⊆ ω ∧
∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)))) |
| 30 | 3, 29 | spcv 2858 |
. . . . 5
⊢
(∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠–onto→𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)) →
(∃𝑠(𝑠 ⊆ ω ∧
∃𝑓 𝑓:𝑠–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o))) |
| 31 | 1, 20, 30 | sylc 62 |
. . . 4
⊢ (𝜑 → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 32 | | fveq1 5557 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)) → (ℎ‘𝑛) = ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛)) |
| 33 | 32 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (ℎ = (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)) → ((ℎ‘𝑛) = 1o ↔ ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 34 | 33 | rexbidv 2498 |
. . . . . . . . . 10
⊢ (ℎ = (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)) → (∃𝑛
∈ ω (ℎ‘𝑛) = 1o ↔ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 35 | 34 | notbid 668 |
. . . . . . . . 9
⊢ (ℎ = (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)) → (¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o ↔ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 36 | 35 | notbid 668 |
. . . . . . . 8
⊢ (ℎ = (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)) → (¬ ¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o ↔ ¬ ¬
∃𝑛 ∈ ω
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 37 | 36, 34 | imbi12d 234 |
. . . . . . 7
⊢ (ℎ = (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)) → ((¬ ¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o → ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o) ↔ (¬ ¬
∃𝑛 ∈ ω
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o))) |
| 38 | | subctctexmid.mk |
. . . . . . . . 9
⊢ (𝜑 → ω ∈
Markov) |
| 39 | | ismkvnex 7221 |
. . . . . . . . . 10
⊢ (ω
∈ Markov → (ω ∈ Markov ↔ ∀ℎ ∈ (2o
↑𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o → ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o))) |
| 40 | 38, 39 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (ω ∈ Markov
↔ ∀ℎ ∈
(2o ↑𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o → ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o))) |
| 41 | 38, 40 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → ∀ℎ ∈ (2o
↑𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o → ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o)) |
| 42 | 41 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
∀ℎ ∈
(2o ↑𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o → ∃𝑛 ∈ ω (ℎ‘𝑛) = 1o)) |
| 43 | | 1lt2o 6500 |
. . . . . . . . . . . 12
⊢
1o ∈ 2o |
| 44 | 43 | a1i 9 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
(1st ‘(𝑔‘𝑛)) = ∅) → 1o ∈
2o) |
| 45 | | 0lt2o 6499 |
. . . . . . . . . . . 12
⊢ ∅
∈ 2o |
| 46 | 45 | a1i 9 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
¬ (1st ‘(𝑔‘𝑛)) = ∅) → ∅ ∈
2o) |
| 47 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 48 | | fof 5480 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) →
𝑔:ω⟶({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 49 | 47, 48 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
𝑔:ω⟶({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 50 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
𝑛 ∈
ω) |
| 51 | 49, 50 | ffvelcdmd 5698 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
(𝑔‘𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 52 | | eldju1st 7137 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) →
((1st ‘(𝑔‘𝑛)) = ∅ ∨ (1st
‘(𝑔‘𝑛)) =
1o)) |
| 53 | 51, 52 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
((1st ‘(𝑔‘𝑛)) = ∅ ∨ (1st
‘(𝑔‘𝑛)) =
1o)) |
| 54 | | 1n0 6490 |
. . . . . . . . . . . . . . . 16
⊢
1o ≠ ∅ |
| 55 | 54 | neii 2369 |
. . . . . . . . . . . . . . 15
⊢ ¬
1o = ∅ |
| 56 | | eqeq1 2203 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘(𝑔‘𝑛)) = 1o → ((1st
‘(𝑔‘𝑛)) = ∅ ↔
1o = ∅)) |
| 57 | 55, 56 | mtbiri 676 |
. . . . . . . . . . . . . 14
⊢
((1st ‘(𝑔‘𝑛)) = 1o → ¬
(1st ‘(𝑔‘𝑛)) = ∅) |
| 58 | 57 | orim2i 762 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(𝑔‘𝑛)) = ∅ ∨ (1st
‘(𝑔‘𝑛)) = 1o) →
((1st ‘(𝑔‘𝑛)) = ∅ ∨ ¬ (1st
‘(𝑔‘𝑛)) = ∅)) |
| 59 | | df-dc 836 |
. . . . . . . . . . . . 13
⊢
(DECID (1st ‘(𝑔‘𝑛)) = ∅ ↔ ((1st
‘(𝑔‘𝑛)) = ∅ ∨ ¬
(1st ‘(𝑔‘𝑛)) = ∅)) |
| 60 | 58, 59 | sylibr 134 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝑔‘𝑛)) = ∅ ∨ (1st
‘(𝑔‘𝑛)) = 1o) →
DECID (1st ‘(𝑔‘𝑛)) = ∅) |
| 61 | 53, 60 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
DECID (1st ‘(𝑔‘𝑛)) = ∅) |
| 62 | 44, 46, 61 | ifcldadc 3590 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) ∈
2o) |
| 63 | 62 | fmpttd 5717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(𝑛 ∈ ω ↦
if((1st ‘(𝑔‘𝑛)) = ∅, 1o,
∅)):ω⟶2o) |
| 64 | | 2fveq3 5563 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑛 → (1st ‘(𝑔‘𝑤)) = (1st ‘(𝑔‘𝑛))) |
| 65 | 64 | eqeq1d 2205 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑛 → ((1st ‘(𝑔‘𝑤)) = ∅ ↔ (1st
‘(𝑔‘𝑛)) = ∅)) |
| 66 | 65 | ifbid 3582 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑛 → if((1st ‘(𝑔‘𝑤)) = ∅, 1o, ∅) =
if((1st ‘(𝑔‘𝑛)) = ∅, 1o,
∅)) |
| 67 | | eqcom 2198 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑛 ↔ 𝑛 = 𝑤) |
| 68 | | eqcom 2198 |
. . . . . . . . . . . 12
⊢
(if((1st ‘(𝑔‘𝑤)) = ∅, 1o, ∅) =
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) ↔
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅)) |
| 69 | 66, 67, 68 | 3imtr3i 200 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑤 → if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅)) |
| 70 | 69 | cbvmptv 4129 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ω ↦
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅)) =
(𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅)) |
| 71 | 70 | feq1i 5400 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ↦
if((1st ‘(𝑔‘𝑛)) = ∅, 1o,
∅)):ω⟶2o ↔ (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)):ω⟶2o) |
| 72 | 63, 71 | sylib 122 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅)):ω⟶2o) |
| 73 | | 2onn 6579 |
. . . . . . . . . 10
⊢
2o ∈ ω |
| 74 | 73 | elexi 2775 |
. . . . . . . . 9
⊢
2o ∈ V |
| 75 | 74, 2 | elmap 6736 |
. . . . . . . 8
⊢ ((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o, ∅)) ∈
(2o ↑𝑚 ω) ↔ (𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅)):ω⟶2o) |
| 76 | 72, 75 | sylibr 134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o, ∅)) ∈
(2o ↑𝑚 ω)) |
| 77 | 37, 42, 76 | rspcdva 2873 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(¬ ¬ ∃𝑛
∈ ω ((𝑤 ∈
ω ↦ if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 78 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o, ∅)) =
(𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅)) |
| 79 | 78, 66, 50, 62 | fvmptd3 5655 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
if((1st ‘(𝑔‘𝑛)) = ∅, 1o,
∅)) |
| 80 | 79 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
(((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o ↔ if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o)) |
| 81 | 51 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → (𝑔‘𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 82 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) |
| 83 | 82 | eqcomd 2202 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → 1o = if((1st ‘(𝑔‘𝑛)) = ∅, 1o,
∅)) |
| 84 | | eqifdc 3596 |
. . . . . . . . . . . . . . . . . . 19
⊢
(DECID (1st ‘(𝑔‘𝑛)) = ∅ → (1o =
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) ↔
(((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ∨ (¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
∅)))) |
| 85 | 61, 84 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
(1o = if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) ↔
(((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ∨ (¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
∅)))) |
| 86 | | eqid 2196 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o = 1o |
| 87 | | orcom 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ∨ (¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅))
↔ ((¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅)
∨ ((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o))) |
| 88 | 55 | intnan 930 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ¬
(¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
∅) |
| 89 | | biorf 745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅)
→ (((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ↔ ((¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅)
∨ ((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o)))) |
| 90 | 88, 89 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ↔ ((¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅)
∨ ((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o))) |
| 91 | 87, 90 | bitr4i 187 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ∨ (¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅))
↔ ((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o)) |
| 92 | 86, 91 | mpbiran2 943 |
. . . . . . . . . . . . . . . . . 18
⊢
((((1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o =
1o) ∨ (¬ (1st ‘(𝑔‘𝑛)) = ∅ ∧ 1o = ∅))
↔ (1st ‘(𝑔‘𝑛)) = ∅) |
| 93 | 85, 92 | bitrdi 196 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
(1o = if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) ↔
(1st ‘(𝑔‘𝑛)) = ∅)) |
| 94 | 93 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → (1o = if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) ↔
(1st ‘(𝑔‘𝑛)) = ∅)) |
| 95 | 83, 94 | mpbid 147 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → (1st ‘(𝑔‘𝑛)) = ∅) |
| 96 | | eldju2ndl 7138 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔‘𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) ∧
(1st ‘(𝑔‘𝑛)) = ∅) → (2nd
‘(𝑔‘𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) |
| 97 | 81, 95, 96 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → (2nd ‘(𝑔‘𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) |
| 98 | | biidd 172 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (2nd ‘(𝑔‘𝑛)) → (𝑦 = {∅} ↔ 𝑦 = {∅})) |
| 99 | 98 | elrab 2920 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘(𝑔‘𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ((2nd
‘(𝑔‘𝑛)) ∈ ω ∧ 𝑦 = {∅})) |
| 100 | 97, 99 | sylib 122 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → ((2nd ‘(𝑔‘𝑛)) ∈ ω ∧ 𝑦 = {∅})) |
| 101 | 100 | simprd 114 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) ∧
if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) → 𝑦 =
{∅}) |
| 102 | 101 | ex 115 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
(if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o → 𝑦 =
{∅})) |
| 103 | 80, 102 | sylbid 150 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑛 ∈ ω) →
(((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o → 𝑦 =
{∅})) |
| 104 | 103 | rexlimdva 2614 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(∃𝑛 ∈ ω
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o → 𝑦 =
{∅})) |
| 105 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) → 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 106 | | biidd 172 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ∅ → (𝑦 = {∅} ↔ 𝑦 = {∅})) |
| 107 | | peano1 4630 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ ω |
| 108 | 107 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) →
∅ ∈ ω) |
| 109 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) → 𝑦 = {∅}) |
| 110 | 106, 108,
109 | elrabd 2922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) →
∅ ∈ {𝑧 ∈
ω ∣ 𝑦 =
{∅}}) |
| 111 | | djulcl 7117 |
. . . . . . . . . . . . 13
⊢ (∅
∈ {𝑧 ∈ ω
∣ 𝑦 = {∅}}
→ (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 112 | 110, 111 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) →
(inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔
1o)) |
| 113 | | foelrn 5799 |
. . . . . . . . . . . 12
⊢ ((𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) ∧
(inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
∃𝑛 ∈ ω
(inl‘∅) = (𝑔‘𝑛)) |
| 114 | 105, 112,
113 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) →
∃𝑛 ∈ ω
(inl‘∅) = (𝑔‘𝑛)) |
| 115 | 79 | adantlr 477 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) ∧ 𝑛 ∈ ω) → ((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
if((1st ‘(𝑔‘𝑛)) = ∅, 1o,
∅)) |
| 116 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
⊢
((inl‘∅) = (𝑔‘𝑛) → (1st
‘(inl‘∅)) = (1st ‘(𝑔‘𝑛))) |
| 117 | | 1stinl 7140 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ ω → (1st ‘(inl‘∅)) =
∅) |
| 118 | 107, 117 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘(inl‘∅)) = ∅ |
| 119 | 116, 118 | eqtr3di 2244 |
. . . . . . . . . . . . . . 15
⊢
((inl‘∅) = (𝑔‘𝑛) → (1st ‘(𝑔‘𝑛)) = ∅) |
| 120 | 119 | iftrued 3568 |
. . . . . . . . . . . . . 14
⊢
((inl‘∅) = (𝑔‘𝑛) → if((1st ‘(𝑔‘𝑛)) = ∅, 1o, ∅) =
1o) |
| 121 | 115, 120 | sylan9eq 2249 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) ∧ 𝑛 ∈ ω) ∧
(inl‘∅) = (𝑔‘𝑛)) → ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o) |
| 122 | 121 | ex 115 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) ∧ 𝑛 ∈ ω) →
((inl‘∅) = (𝑔‘𝑛) → ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 123 | 122 | reximdva 2599 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) →
(∃𝑛 ∈ ω
(inl‘∅) = (𝑔‘𝑛) → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st
‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 124 | 114, 123 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧
𝑦 = {∅}) →
∃𝑛 ∈ ω
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o) |
| 125 | 124 | ex 115 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(𝑦 = {∅} →
∃𝑛 ∈ ω
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o)) |
| 126 | 104, 125 | impbid 129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(∃𝑛 ∈ ω
((𝑤 ∈ ω ↦
if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o ↔ 𝑦 =
{∅})) |
| 127 | 126 | notbid 668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(¬ ∃𝑛 ∈
ω ((𝑤 ∈ ω
↦ if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o ↔ ¬ 𝑦 = {∅})) |
| 128 | 127 | notbid 668 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(¬ ¬ ∃𝑛
∈ ω ((𝑤 ∈
ω ↦ if((1st ‘(𝑔‘𝑤)) = ∅, 1o,
∅))‘𝑛) =
1o ↔ ¬ ¬ 𝑦 = {∅})) |
| 129 | 77, 128, 126 | 3imtr3d 202 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
(¬ ¬ 𝑦 = {∅}
→ 𝑦 =
{∅})) |
| 130 | | df-stab 832 |
. . . . 5
⊢
(STAB 𝑦 = {∅} ↔ (¬ ¬ 𝑦 = {∅} → 𝑦 = {∅})) |
| 131 | 129, 130 | sylibr 134 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) →
STAB 𝑦 =
{∅}) |
| 132 | 31, 131 | exlimddv 1913 |
. . 3
⊢ (𝜑 → STAB 𝑦 = {∅}) |
| 133 | 132 | adantr 276 |
. 2
⊢ ((𝜑 ∧ 𝑦 ⊆ {∅}) →
STAB 𝑦 =
{∅}) |
| 134 | 133 | exmid1stab 4241 |
1
⊢ (𝜑 →
EXMID) |