Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  subctctexmid GIF version

Theorem subctctexmid 15491
Description: If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
Hypotheses
Ref Expression
subctctexmid.x (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)))
subctctexmid.mk (𝜑 → ω ∈ Markov)
Assertion
Ref Expression
subctctexmid (𝜑EXMID)
Distinct variable groups:   𝑓,𝑠,𝑥   𝜑,𝑔   𝑥,𝑔
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑠)

Proof of Theorem subctctexmid
Dummy variables 𝑦 𝑧 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subctctexmid.x . . . . 5 (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)))
2 omex 4625 . . . . . . . 8 ω ∈ V
32rabex 4173 . . . . . . 7 {𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V
43a1i 9 . . . . . 6 (𝜑 → {𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V)
5 ssrab2 3264 . . . . . . 7 {𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω
6 f1oi 5538 . . . . . . . . 9 ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–1-1-onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}
7 f1ofo 5507 . . . . . . . . 9 (( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–1-1-onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} → ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})
86, 7ax-mp 5 . . . . . . . 8 ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}
9 resiexg 4987 . . . . . . . . . 10 ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V → ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) ∈ V)
103, 9ax-mp 5 . . . . . . . . 9 ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) ∈ V
11 foeq1 5472 . . . . . . . . 9 (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) → (𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
1210, 11spcev 2855 . . . . . . . 8 (( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})
138, 12ax-mp 5 . . . . . . 7 𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}
145, 13pm3.2i 272 . . . . . 6 ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})
15 sseq1 3202 . . . . . . . 8 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑠 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω))
16 foeq2 5473 . . . . . . . . 9 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
1716exbidv 1836 . . . . . . . 8 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
1815, 17anbi12d 473 . . . . . . 7 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) ↔ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
1918spcegv 2848 . . . . . 6 ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V → (({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
204, 14, 19mpisyl 1457 . . . . 5 (𝜑 → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
21 foeq3 5474 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑓:𝑠onto𝑥𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
2221exbidv 1836 . . . . . . . . 9 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑓 𝑓:𝑠onto𝑥 ↔ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
2322anbi2d 464 . . . . . . . 8 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) ↔ (𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
2423exbidv 1836 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) ↔ ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
25 djueq1 7099 . . . . . . . . 9 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
26 foeq3 5474 . . . . . . . . 9 ((𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) → (𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
2725, 26syl 14 . . . . . . . 8 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
2827exbidv 1836 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
2924, 28imbi12d 234 . . . . . 6 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)) ↔ (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))))
303, 29spcv 2854 . . . . 5 (∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)) → (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
311, 20, 30sylc 62 . . . 4 (𝜑 → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
32 fveq1 5553 . . . . . . . . . . . 12 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (𝑛) = ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛))
3332eqeq1d 2202 . . . . . . . . . . 11 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → ((𝑛) = 1o ↔ ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3433rexbidv 2495 . . . . . . . . . 10 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (∃𝑛 ∈ ω (𝑛) = 1o ↔ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3534notbid 668 . . . . . . . . 9 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (¬ ∃𝑛 ∈ ω (𝑛) = 1o ↔ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3635notbid 668 . . . . . . . 8 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o ↔ ¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3736, 34imbi12d 234 . . . . . . 7 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → ((¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o) ↔ (¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o)))
38 subctctexmid.mk . . . . . . . . 9 (𝜑 → ω ∈ Markov)
39 ismkvnex 7214 . . . . . . . . . 10 (ω ∈ Markov → (ω ∈ Markov ↔ ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o)))
4038, 39syl 14 . . . . . . . . 9 (𝜑 → (ω ∈ Markov ↔ ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o)))
4138, 40mpbid 147 . . . . . . . 8 (𝜑 → ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o))
4241adantr 276 . . . . . . 7 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o))
43 1lt2o 6495 . . . . . . . . . . . 12 1o ∈ 2o
4443a1i 9 . . . . . . . . . . 11 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ (1st ‘(𝑔𝑛)) = ∅) → 1o ∈ 2o)
45 0lt2o 6494 . . . . . . . . . . . 12 ∅ ∈ 2o
4645a1i 9 . . . . . . . . . . 11 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ ¬ (1st ‘(𝑔𝑛)) = ∅) → ∅ ∈ 2o)
47 simplr 528 . . . . . . . . . . . . . . 15 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
48 fof 5476 . . . . . . . . . . . . . . 15 (𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) → 𝑔:ω⟶({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
4947, 48syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → 𝑔:ω⟶({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
50 simpr 110 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
5149, 50ffvelcdmd 5694 . . . . . . . . . . . . 13 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
52 eldju1st 7130 . . . . . . . . . . . . 13 ((𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) → ((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o))
5351, 52syl 14 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → ((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o))
54 1n0 6485 . . . . . . . . . . . . . . . 16 1o ≠ ∅
5554neii 2366 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
56 eqeq1 2200 . . . . . . . . . . . . . . 15 ((1st ‘(𝑔𝑛)) = 1o → ((1st ‘(𝑔𝑛)) = ∅ ↔ 1o = ∅))
5755, 56mtbiri 676 . . . . . . . . . . . . . 14 ((1st ‘(𝑔𝑛)) = 1o → ¬ (1st ‘(𝑔𝑛)) = ∅)
5857orim2i 762 . . . . . . . . . . . . 13 (((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o) → ((1st ‘(𝑔𝑛)) = ∅ ∨ ¬ (1st ‘(𝑔𝑛)) = ∅))
59 df-dc 836 . . . . . . . . . . . . 13 (DECID (1st ‘(𝑔𝑛)) = ∅ ↔ ((1st ‘(𝑔𝑛)) = ∅ ∨ ¬ (1st ‘(𝑔𝑛)) = ∅))
6058, 59sylibr 134 . . . . . . . . . . . 12 (((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o) → DECID (1st ‘(𝑔𝑛)) = ∅)
6153, 60syl 14 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → DECID (1st ‘(𝑔𝑛)) = ∅)
6244, 46, 61ifcldadc 3586 . . . . . . . . . 10 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ∈ 2o)
6362fmpttd 5713 . . . . . . . . 9 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑛 ∈ ω ↦ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅)):ω⟶2o)
64 2fveq3 5559 . . . . . . . . . . . . . 14 (𝑤 = 𝑛 → (1st ‘(𝑔𝑤)) = (1st ‘(𝑔𝑛)))
6564eqeq1d 2202 . . . . . . . . . . . . 13 (𝑤 = 𝑛 → ((1st ‘(𝑔𝑤)) = ∅ ↔ (1st ‘(𝑔𝑛)) = ∅))
6665ifbid 3578 . . . . . . . . . . . 12 (𝑤 = 𝑛 → if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
67 eqcom 2195 . . . . . . . . . . . 12 (𝑤 = 𝑛𝑛 = 𝑤)
68 eqcom 2195 . . . . . . . . . . . 12 (if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
6966, 67, 683imtr3i 200 . . . . . . . . . . 11 (𝑛 = 𝑤 → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
7069cbvmptv 4125 . . . . . . . . . 10 (𝑛 ∈ ω ↦ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅)) = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
7170feq1i 5396 . . . . . . . . 9 ((𝑛 ∈ ω ↦ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅)):ω⟶2o ↔ (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)):ω⟶2o)
7263, 71sylib 122 . . . . . . . 8 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)):ω⟶2o)
73 2onn 6574 . . . . . . . . . 10 2o ∈ ω
7473elexi 2772 . . . . . . . . 9 2o ∈ V
7574, 2elmap 6731 . . . . . . . 8 ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)):ω⟶2o)
7672, 75sylibr 134 . . . . . . 7 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) ∈ (2o𝑚 ω))
7737, 42, 76rspcdva 2869 . . . . . 6 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
78 eqid 2193 . . . . . . . . . . . . 13 (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
7978, 66, 50, 62fvmptd3 5651 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
8079eqeq1d 2202 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o ↔ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o))
8151adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
82 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o)
8382eqcomd 2199 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → 1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
84 eqifdc 3592 . . . . . . . . . . . . . . . . . . 19 (DECID (1st ‘(𝑔𝑛)) = ∅ → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅))))
8561, 84syl 14 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅))))
86 eqid 2193 . . . . . . . . . . . . . . . . . . 19 1o = 1o
87 orcom 729 . . . . . . . . . . . . . . . . . . . 20 ((((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)) ↔ ((¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) ∨ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o)))
8855intnan 930 . . . . . . . . . . . . . . . . . . . . 21 ¬ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)
89 biorf 745 . . . . . . . . . . . . . . . . . . . . 21 (¬ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) → (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ↔ ((¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) ∨ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o))))
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ↔ ((¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) ∨ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o)))
9187, 90bitr4i 187 . . . . . . . . . . . . . . . . . . 19 ((((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)) ↔ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o))
9286, 91mpbiran2 943 . . . . . . . . . . . . . . . . . 18 ((((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)) ↔ (1st ‘(𝑔𝑛)) = ∅)
9385, 92bitrdi 196 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (1st ‘(𝑔𝑛)) = ∅))
9493adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (1st ‘(𝑔𝑛)) = ∅))
9583, 94mpbid 147 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (1st ‘(𝑔𝑛)) = ∅)
96 eldju2ndl 7131 . . . . . . . . . . . . . . 15 (((𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) ∧ (1st ‘(𝑔𝑛)) = ∅) → (2nd ‘(𝑔𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}})
9781, 95, 96syl2anc 411 . . . . . . . . . . . . . 14 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (2nd ‘(𝑔𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}})
98 biidd 172 . . . . . . . . . . . . . . 15 (𝑧 = (2nd ‘(𝑔𝑛)) → (𝑦 = {∅} ↔ 𝑦 = {∅}))
9998elrab 2916 . . . . . . . . . . . . . 14 ((2nd ‘(𝑔𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ((2nd ‘(𝑔𝑛)) ∈ ω ∧ 𝑦 = {∅}))
10097, 99sylib 122 . . . . . . . . . . . . 13 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → ((2nd ‘(𝑔𝑛)) ∈ ω ∧ 𝑦 = {∅}))
101100simprd 114 . . . . . . . . . . . 12 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → 𝑦 = {∅})
102101ex 115 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o𝑦 = {∅}))
10380, 102sylbid 150 . . . . . . . . . 10 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o𝑦 = {∅}))
104103rexlimdva 2611 . . . . . . . . 9 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o𝑦 = {∅}))
105 simplr 528 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
106 biidd 172 . . . . . . . . . . . . . 14 (𝑧 = ∅ → (𝑦 = {∅} ↔ 𝑦 = {∅}))
107 peano1 4626 . . . . . . . . . . . . . . 15 ∅ ∈ ω
108107a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∅ ∈ ω)
109 simpr 110 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → 𝑦 = {∅})
110106, 108, 109elrabd 2918 . . . . . . . . . . . . 13 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∅ ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}})
111 djulcl 7110 . . . . . . . . . . . . 13 (∅ ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
112110, 111syl 14 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
113 foelrn 5795 . . . . . . . . . . . 12 ((𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) ∧ (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → ∃𝑛 ∈ ω (inl‘∅) = (𝑔𝑛))
114105, 112, 113syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∃𝑛 ∈ ω (inl‘∅) = (𝑔𝑛))
11579adantlr 477 . . . . . . . . . . . . . 14 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) ∧ 𝑛 ∈ ω) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
116 fveq2 5554 . . . . . . . . . . . . . . . 16 ((inl‘∅) = (𝑔𝑛) → (1st ‘(inl‘∅)) = (1st ‘(𝑔𝑛)))
117 1stinl 7133 . . . . . . . . . . . . . . . . 17 (∅ ∈ ω → (1st ‘(inl‘∅)) = ∅)
118107, 117ax-mp 5 . . . . . . . . . . . . . . . 16 (1st ‘(inl‘∅)) = ∅
119116, 118eqtr3di 2241 . . . . . . . . . . . . . . 15 ((inl‘∅) = (𝑔𝑛) → (1st ‘(𝑔𝑛)) = ∅)
120119iftrued 3564 . . . . . . . . . . . . . 14 ((inl‘∅) = (𝑔𝑛) → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o)
121115, 120sylan9eq 2246 . . . . . . . . . . . . 13 (((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) ∧ 𝑛 ∈ ω) ∧ (inl‘∅) = (𝑔𝑛)) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o)
122121ex 115 . . . . . . . . . . . 12 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) ∧ 𝑛 ∈ ω) → ((inl‘∅) = (𝑔𝑛) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
123122reximdva 2596 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → (∃𝑛 ∈ ω (inl‘∅) = (𝑔𝑛) → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
124114, 123mpd 13 . . . . . . . . . 10 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o)
125124ex 115 . . . . . . . . 9 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑦 = {∅} → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
126104, 125impbid 129 . . . . . . . 8 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o𝑦 = {∅}))
127126notbid 668 . . . . . . 7 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o ↔ ¬ 𝑦 = {∅}))
128127notbid 668 . . . . . 6 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o ↔ ¬ ¬ 𝑦 = {∅}))
12977, 128, 1263imtr3d 202 . . . . 5 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ¬ 𝑦 = {∅} → 𝑦 = {∅}))
130 df-stab 832 . . . . 5 (STAB 𝑦 = {∅} ↔ (¬ ¬ 𝑦 = {∅} → 𝑦 = {∅}))
131129, 130sylibr 134 . . . 4 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → STAB 𝑦 = {∅})
13231, 131exlimddv 1910 . . 3 (𝜑STAB 𝑦 = {∅})
133132adantr 276 . 2 ((𝜑𝑦 ⊆ {∅}) → STAB 𝑦 = {∅})
134133exmid1stab 4237 1 (𝜑EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  STAB wstab 831  DECID wdc 835  wal 1362   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  wss 3153  c0 3446  ifcif 3557  {csn 3618  cmpt 4090  EXMIDwem 4223   I cid 4319  ωcom 4622  cres 4661  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  cdju 7096  inlcinl 7104  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-exmid 4224  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-map 6704  df-dju 7097  df-inl 7106  df-inr 7107  df-markov 7211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator