Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  subctctexmid GIF version

Theorem subctctexmid 13196
Description: If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
Hypotheses
Ref Expression
subctctexmid.x (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)))
subctctexmid.mk (𝜑 → ω ∈ Markov)
Assertion
Ref Expression
subctctexmid (𝜑EXMID)
Distinct variable groups:   𝑓,𝑠,𝑥   𝜑,𝑔   𝑥,𝑔
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑠)

Proof of Theorem subctctexmid
Dummy variables 𝑦 𝑧 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subctctexmid.x . . . . 5 (𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)))
2 omex 4507 . . . . . . . 8 ω ∈ V
32rabex 4072 . . . . . . 7 {𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V
43a1i 9 . . . . . 6 (𝜑 → {𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V)
5 ssrab2 3182 . . . . . . 7 {𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω
6 f1oi 5405 . . . . . . . . 9 ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–1-1-onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}
7 f1ofo 5374 . . . . . . . . 9 (( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–1-1-onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} → ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})
86, 7ax-mp 5 . . . . . . . 8 ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}
9 resiexg 4864 . . . . . . . . . 10 ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V → ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) ∈ V)
103, 9ax-mp 5 . . . . . . . . 9 ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) ∈ V
11 foeq1 5341 . . . . . . . . 9 (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}) → (𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
1210, 11spcev 2780 . . . . . . . 8 (( I ↾ {𝑧 ∈ ω ∣ 𝑦 = {∅}}):{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})
138, 12ax-mp 5 . . . . . . 7 𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}
145, 13pm3.2i 270 . . . . . 6 ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})
15 sseq1 3120 . . . . . . . 8 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑠 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω))
16 foeq2 5342 . . . . . . . . 9 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
1716exbidv 1797 . . . . . . . 8 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
1815, 17anbi12d 464 . . . . . . 7 (𝑠 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) ↔ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
1918spcegv 2774 . . . . . 6 ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ∈ V → (({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝑦 = {∅}}–onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
204, 14, 19mpisyl 1422 . . . . 5 (𝜑 → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
21 foeq3 5343 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑓:𝑠onto𝑥𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
2221exbidv 1797 . . . . . . . . 9 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑓 𝑓:𝑠onto𝑥 ↔ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}))
2322anbi2d 459 . . . . . . . 8 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) ↔ (𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
2423exbidv 1797 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) ↔ ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}})))
25 djueq1 6925 . . . . . . . . 9 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
26 foeq3 5343 . . . . . . . . 9 ((𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) → (𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
2725, 26syl 14 . . . . . . . 8 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
2827exbidv 1797 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
2924, 28imbi12d 233 . . . . . 6 (𝑥 = {𝑧 ∈ ω ∣ 𝑦 = {∅}} → ((∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)) ↔ (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))))
303, 29spcv 2779 . . . . 5 (∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)) → (∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto→{𝑧 ∈ ω ∣ 𝑦 = {∅}}) → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)))
311, 20, 30sylc 62 . . . 4 (𝜑 → ∃𝑔 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
32 fveq1 5420 . . . . . . . . . . . 12 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (𝑛) = ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛))
3332eqeq1d 2148 . . . . . . . . . . 11 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → ((𝑛) = 1o ↔ ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3433rexbidv 2438 . . . . . . . . . 10 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (∃𝑛 ∈ ω (𝑛) = 1o ↔ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3534notbid 656 . . . . . . . . 9 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (¬ ∃𝑛 ∈ ω (𝑛) = 1o ↔ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3635notbid 656 . . . . . . . 8 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → (¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o ↔ ¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
3736, 34imbi12d 233 . . . . . . 7 ( = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) → ((¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o) ↔ (¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o)))
38 subctctexmid.mk . . . . . . . . 9 (𝜑 → ω ∈ Markov)
39 ismkvnex 7029 . . . . . . . . . 10 (ω ∈ Markov → (ω ∈ Markov ↔ ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o)))
4038, 39syl 14 . . . . . . . . 9 (𝜑 → (ω ∈ Markov ↔ ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o)))
4138, 40mpbid 146 . . . . . . . 8 (𝜑 → ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o))
4241adantr 274 . . . . . . 7 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → ∀ ∈ (2o𝑚 ω)(¬ ¬ ∃𝑛 ∈ ω (𝑛) = 1o → ∃𝑛 ∈ ω (𝑛) = 1o))
43 1lt2o 6339 . . . . . . . . . . . 12 1o ∈ 2o
4443a1i 9 . . . . . . . . . . 11 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ (1st ‘(𝑔𝑛)) = ∅) → 1o ∈ 2o)
45 0lt2o 6338 . . . . . . . . . . . 12 ∅ ∈ 2o
4645a1i 9 . . . . . . . . . . 11 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ ¬ (1st ‘(𝑔𝑛)) = ∅) → ∅ ∈ 2o)
47 simplr 519 . . . . . . . . . . . . . . 15 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
48 fof 5345 . . . . . . . . . . . . . . 15 (𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) → 𝑔:ω⟶({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
4947, 48syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → 𝑔:ω⟶({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
50 simpr 109 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
5149, 50ffvelrnd 5556 . . . . . . . . . . . . 13 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
52 eldju1st 6956 . . . . . . . . . . . . 13 ((𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) → ((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o))
5351, 52syl 14 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → ((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o))
54 1n0 6329 . . . . . . . . . . . . . . . 16 1o ≠ ∅
5554neii 2310 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
56 eqeq1 2146 . . . . . . . . . . . . . . 15 ((1st ‘(𝑔𝑛)) = 1o → ((1st ‘(𝑔𝑛)) = ∅ ↔ 1o = ∅))
5755, 56mtbiri 664 . . . . . . . . . . . . . 14 ((1st ‘(𝑔𝑛)) = 1o → ¬ (1st ‘(𝑔𝑛)) = ∅)
5857orim2i 750 . . . . . . . . . . . . 13 (((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o) → ((1st ‘(𝑔𝑛)) = ∅ ∨ ¬ (1st ‘(𝑔𝑛)) = ∅))
59 df-dc 820 . . . . . . . . . . . . 13 (DECID (1st ‘(𝑔𝑛)) = ∅ ↔ ((1st ‘(𝑔𝑛)) = ∅ ∨ ¬ (1st ‘(𝑔𝑛)) = ∅))
6058, 59sylibr 133 . . . . . . . . . . . 12 (((1st ‘(𝑔𝑛)) = ∅ ∨ (1st ‘(𝑔𝑛)) = 1o) → DECID (1st ‘(𝑔𝑛)) = ∅)
6153, 60syl 14 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → DECID (1st ‘(𝑔𝑛)) = ∅)
6244, 46, 61ifcldadc 3501 . . . . . . . . . 10 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ∈ 2o)
6362fmpttd 5575 . . . . . . . . 9 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑛 ∈ ω ↦ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅)):ω⟶2o)
64 2fveq3 5426 . . . . . . . . . . . . . 14 (𝑤 = 𝑛 → (1st ‘(𝑔𝑤)) = (1st ‘(𝑔𝑛)))
6564eqeq1d 2148 . . . . . . . . . . . . 13 (𝑤 = 𝑛 → ((1st ‘(𝑔𝑤)) = ∅ ↔ (1st ‘(𝑔𝑛)) = ∅))
6665ifbid 3493 . . . . . . . . . . . 12 (𝑤 = 𝑛 → if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
67 eqcom 2141 . . . . . . . . . . . 12 (𝑤 = 𝑛𝑛 = 𝑤)
68 eqcom 2141 . . . . . . . . . . . 12 (if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
6966, 67, 683imtr3i 199 . . . . . . . . . . 11 (𝑛 = 𝑤 → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
7069cbvmptv 4024 . . . . . . . . . 10 (𝑛 ∈ ω ↦ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅)) = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
7170feq1i 5265 . . . . . . . . 9 ((𝑛 ∈ ω ↦ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅)):ω⟶2o ↔ (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)):ω⟶2o)
7263, 71sylib 121 . . . . . . . 8 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)):ω⟶2o)
73 2onn 6417 . . . . . . . . . 10 2o ∈ ω
7473elexi 2698 . . . . . . . . 9 2o ∈ V
7574, 2elmap 6571 . . . . . . . 8 ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)):ω⟶2o)
7672, 75sylibr 133 . . . . . . 7 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) ∈ (2o𝑚 ω))
7737, 42, 76rspcdva 2794 . . . . . 6 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
78 eqid 2139 . . . . . . . . . . . . 13 (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅)) = (𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))
7978, 66, 50, 62fvmptd3 5514 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
8079eqeq1d 2148 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o ↔ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o))
8151adantr 274 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
82 simpr 109 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o)
8382eqcomd 2145 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → 1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
84 eqifdc 3506 . . . . . . . . . . . . . . . . . . 19 (DECID (1st ‘(𝑔𝑛)) = ∅ → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅))))
8561, 84syl 14 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅))))
86 eqid 2139 . . . . . . . . . . . . . . . . . . 19 1o = 1o
87 orcom 717 . . . . . . . . . . . . . . . . . . . 20 ((((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)) ↔ ((¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) ∨ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o)))
8855intnan 914 . . . . . . . . . . . . . . . . . . . . 21 ¬ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)
89 biorf 733 . . . . . . . . . . . . . . . . . . . . 21 (¬ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) → (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ↔ ((¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) ∨ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o))))
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ↔ ((¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅) ∨ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o)))
9187, 90bitr4i 186 . . . . . . . . . . . . . . . . . . 19 ((((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)) ↔ ((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o))
9286, 91mpbiran2 925 . . . . . . . . . . . . . . . . . 18 ((((1st ‘(𝑔𝑛)) = ∅ ∧ 1o = 1o) ∨ (¬ (1st ‘(𝑔𝑛)) = ∅ ∧ 1o = ∅)) ↔ (1st ‘(𝑔𝑛)) = ∅)
9385, 92syl6bb 195 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (1st ‘(𝑔𝑛)) = ∅))
9493adantr 274 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (1o = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) ↔ (1st ‘(𝑔𝑛)) = ∅))
9583, 94mpbid 146 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (1st ‘(𝑔𝑛)) = ∅)
96 eldju2ndl 6957 . . . . . . . . . . . . . . 15 (((𝑔𝑛) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) ∧ (1st ‘(𝑔𝑛)) = ∅) → (2nd ‘(𝑔𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}})
9781, 95, 96syl2anc 408 . . . . . . . . . . . . . 14 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → (2nd ‘(𝑔𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}})
98 biidd 171 . . . . . . . . . . . . . . 15 (𝑧 = (2nd ‘(𝑔𝑛)) → (𝑦 = {∅} ↔ 𝑦 = {∅}))
9998elrab 2840 . . . . . . . . . . . . . 14 ((2nd ‘(𝑔𝑛)) ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}} ↔ ((2nd ‘(𝑔𝑛)) ∈ ω ∧ 𝑦 = {∅}))
10097, 99sylib 121 . . . . . . . . . . . . 13 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → ((2nd ‘(𝑔𝑛)) ∈ ω ∧ 𝑦 = {∅}))
101100simprd 113 . . . . . . . . . . . 12 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) ∧ if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o) → 𝑦 = {∅})
102101ex 114 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o𝑦 = {∅}))
10380, 102sylbid 149 . . . . . . . . . 10 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑛 ∈ ω) → (((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o𝑦 = {∅}))
104103rexlimdva 2549 . . . . . . . . 9 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o𝑦 = {∅}))
105 simplr 519 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → 𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
106 biidd 171 . . . . . . . . . . . . . 14 (𝑧 = ∅ → (𝑦 = {∅} ↔ 𝑦 = {∅}))
107 peano1 4508 . . . . . . . . . . . . . . 15 ∅ ∈ ω
108107a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∅ ∈ ω)
109 simpr 109 . . . . . . . . . . . . . 14 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → 𝑦 = {∅})
110106, 108, 109elrabd 2842 . . . . . . . . . . . . 13 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∅ ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}})
111 djulcl 6936 . . . . . . . . . . . . 13 (∅ ∈ {𝑧 ∈ ω ∣ 𝑦 = {∅}} → (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
112110, 111syl 14 . . . . . . . . . . . 12 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o))
113 foelrn 5654 . . . . . . . . . . . 12 ((𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o) ∧ (inl‘∅) ∈ ({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → ∃𝑛 ∈ ω (inl‘∅) = (𝑔𝑛))
114105, 112, 113syl2anc 408 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∃𝑛 ∈ ω (inl‘∅) = (𝑔𝑛))
11579adantlr 468 . . . . . . . . . . . . . 14 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) ∧ 𝑛 ∈ ω) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅))
116 1stinl 6959 . . . . . . . . . . . . . . . . 17 (∅ ∈ ω → (1st ‘(inl‘∅)) = ∅)
117107, 116ax-mp 5 . . . . . . . . . . . . . . . 16 (1st ‘(inl‘∅)) = ∅
118 fveq2 5421 . . . . . . . . . . . . . . . 16 ((inl‘∅) = (𝑔𝑛) → (1st ‘(inl‘∅)) = (1st ‘(𝑔𝑛)))
119117, 118syl5reqr 2187 . . . . . . . . . . . . . . 15 ((inl‘∅) = (𝑔𝑛) → (1st ‘(𝑔𝑛)) = ∅)
120119iftrued 3481 . . . . . . . . . . . . . 14 ((inl‘∅) = (𝑔𝑛) → if((1st ‘(𝑔𝑛)) = ∅, 1o, ∅) = 1o)
121115, 120sylan9eq 2192 . . . . . . . . . . . . 13 (((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) ∧ 𝑛 ∈ ω) ∧ (inl‘∅) = (𝑔𝑛)) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o)
122121ex 114 . . . . . . . . . . . 12 ((((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) ∧ 𝑛 ∈ ω) → ((inl‘∅) = (𝑔𝑛) → ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
123122reximdva 2534 . . . . . . . . . . 11 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → (∃𝑛 ∈ ω (inl‘∅) = (𝑔𝑛) → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
124114, 123mpd 13 . . . . . . . . . 10 (((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) ∧ 𝑦 = {∅}) → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o)
125124ex 114 . . . . . . . . 9 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (𝑦 = {∅} → ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o))
126104, 125impbid 128 . . . . . . . 8 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o𝑦 = {∅}))
127126notbid 656 . . . . . . 7 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o ↔ ¬ 𝑦 = {∅}))
128127notbid 656 . . . . . 6 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ¬ ∃𝑛 ∈ ω ((𝑤 ∈ ω ↦ if((1st ‘(𝑔𝑤)) = ∅, 1o, ∅))‘𝑛) = 1o ↔ ¬ ¬ 𝑦 = {∅}))
12977, 128, 1263imtr3d 201 . . . . 5 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → (¬ ¬ 𝑦 = {∅} → 𝑦 = {∅}))
130 df-stab 816 . . . . 5 (STAB 𝑦 = {∅} ↔ (¬ ¬ 𝑦 = {∅} → 𝑦 = {∅}))
131129, 130sylibr 133 . . . 4 ((𝜑𝑔:ω–onto→({𝑧 ∈ ω ∣ 𝑦 = {∅}} ⊔ 1o)) → STAB 𝑦 = {∅})
13231, 131exlimddv 1870 . . 3 (𝜑STAB 𝑦 = {∅})
133132adantr 274 . 2 ((𝜑𝑦 ⊆ {∅}) → STAB 𝑦 = {∅})
134133exmid1stab 13195 1 (𝜑EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  STAB wstab 815  DECID wdc 819  wal 1329   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  wss 3071  c0 3363  ifcif 3474  {csn 3527  cmpt 3989  EXMIDwem 4118   I cid 4210  ωcom 4504  cres 4541  wf 5119  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  2oc2o 6307  𝑚 cmap 6542  cdju 6922  inlcinl 6930  Markovcmarkov 7025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-exmid 4119  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-map 6544  df-dju 6923  df-inl 6932  df-inr 6933  df-markov 7026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator