ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlemd GIF version

Theorem nninfwlporlemd 7288
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x (𝜑𝑋:ω⟶2o)
nninfwlporlem.y (𝜑𝑌:ω⟶2o)
nninfwlporlem.d 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
Assertion
Ref Expression
nninfwlporlemd (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem nninfwlporlemd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1n0 6530 . . . . . . . . 9 1o ≠ ∅
21neii 2379 . . . . . . . 8 ¬ 1o = ∅
32intnan 931 . . . . . . 7 ¬ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)
43biorfi 748 . . . . . 6 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
5 eqid 2206 . . . . . . . 8 1o = 1o
65biantru 302 . . . . . . 7 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o))
76orbi1i 765 . . . . . 6 (((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
84, 7bitri 184 . . . . 5 ((𝑋𝑖) = (𝑌𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
9 eqcom 2208 . . . . . 6 (1o = (𝐷𝑖) ↔ (𝐷𝑖) = 1o)
10 nninfwlporlem.d . . . . . . . . . 10 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
11 fveq2 5588 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑋𝑖) = (𝑋𝑗))
12 fveq2 5588 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑌𝑖) = (𝑌𝑗))
1311, 12eqeq12d 2221 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋𝑗) = (𝑌𝑗)))
1413ifbid 3596 . . . . . . . . . . 11 (𝑖 = 𝑗 → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) = if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1514cbvmptv 4147 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)) = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1610, 15eqtri 2227 . . . . . . . . 9 𝐷 = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
17 fveq2 5588 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑋𝑗) = (𝑋𝑖))
18 fveq2 5588 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
1917, 18eqeq12d 2221 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑋𝑗) = (𝑌𝑗) ↔ (𝑋𝑖) = (𝑌𝑖)))
2019ifbid 3596 . . . . . . . . 9 (𝑗 = 𝑖 → if((𝑋𝑗) = (𝑌𝑗), 1o, ∅) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
21 simpr 110 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
22 1lt2o 6540 . . . . . . . . . . 11 1o ∈ 2o
2322a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
24 0lt2o 6539 . . . . . . . . . . 11 ∅ ∈ 2o
2524a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
26 2ssom 6622 . . . . . . . . . . . 12 2o ⊆ ω
27 nninfwlporlem.x . . . . . . . . . . . . 13 (𝜑𝑋:ω⟶2o)
2827ffvelcdmda 5727 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ 2o)
2926, 28sselid 3195 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ ω)
30 nninfwlporlem.y . . . . . . . . . . . . 13 (𝜑𝑌:ω⟶2o)
3130ffvelcdmda 5727 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ 2o)
3226, 31sselid 3195 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ ω)
33 nndceq 6597 . . . . . . . . . . 11 (((𝑋𝑖) ∈ ω ∧ (𝑌𝑖) ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3429, 32, 33syl2anc 411 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3523, 25, 34ifcldcd 3612 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
3616, 20, 21, 35fvmptd3 5685 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝐷𝑖) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
3736eqeq2d 2218 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ 1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)))
38 eqifdc 3611 . . . . . . . 8 (DECID (𝑋𝑖) = (𝑌𝑖) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
3934, 38syl 14 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
4037, 39bitrd 188 . . . . . 6 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
419, 40bitr3id 194 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐷𝑖) = 1o ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
428, 41bitr4id 199 . . . 4 ((𝜑𝑖 ∈ ω) → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝐷𝑖) = 1o))
4342ralbidva 2503 . . 3 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ ω (𝐷𝑖) = 1o))
44 fveqeq2 5597 . . . 4 (𝑖 = 𝑗 → ((𝐷𝑖) = 1o ↔ (𝐷𝑗) = 1o))
4544cbvralv 2739 . . 3 (∀𝑖 ∈ ω (𝐷𝑖) = 1o ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o)
4643, 45bitrdi 196 . 2 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
4727ffnd 5435 . . 3 (𝜑𝑋 Fn ω)
4830ffnd 5435 . . 3 (𝜑𝑌 Fn ω)
49 eqfnfv 5689 . . 3 ((𝑋 Fn ω ∧ 𝑌 Fn ω) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5047, 48, 49syl2anc 411 . 2 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5135ralrimiva 2580 . . . 4 (𝜑 → ∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
5210fnmpt 5411 . . . 4 (∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o𝐷 Fn ω)
5351, 52syl 14 . . 3 (𝜑𝐷 Fn ω)
54 eqidd 2207 . . 3 (𝑗 = 𝑖 → 1o = 1o)
55 1onn 6618 . . . 4 1o ∈ ω
5655a1i 9 . . 3 ((𝜑𝑗 ∈ ω) → 1o ∈ ω)
5755a1i 9 . . 3 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
5853, 54, 56, 57fnmptfvd 5696 . 2 (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
5946, 50, 583bitr4d 220 1 (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  c0 3464  ifcif 3575  cmpt 4112  ωcom 4645   Fn wfn 5274  wf 5275  cfv 5279  1oc1o 6507  2oc2o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-1o 6514  df-2o 6515
This theorem is referenced by:  nninfwlporlem  7289
  Copyright terms: Public domain W3C validator