Step | Hyp | Ref
| Expression |
1 | | 1n0 6411 |
. . . . . . . . 9
⊢
1o ≠ ∅ |
2 | 1 | neii 2342 |
. . . . . . . 8
⊢ ¬
1o = ∅ |
3 | 2 | intnan 924 |
. . . . . . 7
⊢ ¬
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅) |
4 | 3 | biorfi 741 |
. . . . . 6
⊢ ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ ((𝑋‘𝑖) = (𝑌‘𝑖) ∨ (¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅))) |
5 | | eqid 2170 |
. . . . . . . 8
⊢
1o = 1o |
6 | 5 | biantru 300 |
. . . . . . 7
⊢ ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ ((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
1o)) |
7 | 6 | orbi1i 758 |
. . . . . 6
⊢ (((𝑋‘𝑖) = (𝑌‘𝑖) ∨ (¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = ∅)) ↔
(((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅))) |
8 | 4, 7 | bitri 183 |
. . . . 5
⊢ ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅))) |
9 | | eqcom 2172 |
. . . . . 6
⊢
(1o = (𝐷‘𝑖) ↔ (𝐷‘𝑖) = 1o) |
10 | | nninfwlporlem.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
11 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑋‘𝑖) = (𝑋‘𝑗)) |
12 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑌‘𝑖) = (𝑌‘𝑗)) |
13 | 11, 12 | eqeq12d 2185 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (𝑋‘𝑗) = (𝑌‘𝑗))) |
14 | 13 | ifbid 3547 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) = if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅)) |
15 | 14 | cbvmptv 4085 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ω ↦
if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) = (𝑗 ∈ ω ↦
if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅)) |
16 | 10, 15 | eqtri 2191 |
. . . . . . . . 9
⊢ 𝐷 = (𝑗 ∈ ω ↦ if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅)) |
17 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑋‘𝑗) = (𝑋‘𝑖)) |
18 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
19 | 17, 18 | eqeq12d 2185 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → ((𝑋‘𝑗) = (𝑌‘𝑗) ↔ (𝑋‘𝑖) = (𝑌‘𝑖))) |
20 | 19 | ifbid 3547 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅) = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
21 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 𝑖 ∈ ω) |
22 | | 1lt2o 6421 |
. . . . . . . . . . 11
⊢
1o ∈ 2o |
23 | 22 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
2o) |
24 | | 0lt2o 6420 |
. . . . . . . . . . 11
⊢ ∅
∈ 2o |
25 | 24 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∅ ∈
2o) |
26 | | 2ssom 6503 |
. . . . . . . . . . . 12
⊢
2o ⊆ ω |
27 | | nninfwlporlem.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋:ω⟶2o) |
28 | 27 | ffvelrnda 5631 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑋‘𝑖) ∈ 2o) |
29 | 26, 28 | sselid 3145 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑋‘𝑖) ∈ ω) |
30 | | nninfwlporlem.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌:ω⟶2o) |
31 | 30 | ffvelrnda 5631 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑌‘𝑖) ∈ 2o) |
32 | 26, 31 | sselid 3145 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑌‘𝑖) ∈ ω) |
33 | | nndceq 6478 |
. . . . . . . . . . 11
⊢ (((𝑋‘𝑖) ∈ ω ∧ (𝑌‘𝑖) ∈ ω) → DECID
(𝑋‘𝑖) = (𝑌‘𝑖)) |
34 | 29, 32, 33 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → DECID
(𝑋‘𝑖) = (𝑌‘𝑖)) |
35 | 23, 25, 34 | ifcldcd 3561 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o) |
36 | 16, 20, 21, 35 | fvmptd3 5589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝐷‘𝑖) = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
37 | 36 | eqeq2d 2182 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (1o =
(𝐷‘𝑖) ↔ 1o = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅))) |
38 | | eqifdc 3560 |
. . . . . . . 8
⊢
(DECID (𝑋‘𝑖) = (𝑌‘𝑖) → (1o = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
39 | 34, 38 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (1o =
if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
40 | 37, 39 | bitrd 187 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (1o =
(𝐷‘𝑖) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
41 | 9, 40 | bitr3id 193 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ((𝐷‘𝑖) = 1o ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
42 | 8, 41 | bitr4id 198 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (𝐷‘𝑖) = 1o)) |
43 | 42 | ralbidva 2466 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ∀𝑖 ∈ ω (𝐷‘𝑖) = 1o)) |
44 | | fveqeq2 5505 |
. . . 4
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖) = 1o ↔ (𝐷‘𝑗) = 1o)) |
45 | 44 | cbvralv 2696 |
. . 3
⊢
(∀𝑖 ∈
ω (𝐷‘𝑖) = 1o ↔
∀𝑗 ∈ ω
(𝐷‘𝑗) = 1o) |
46 | 43, 45 | bitrdi 195 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ∀𝑗 ∈ ω (𝐷‘𝑗) = 1o)) |
47 | 27 | ffnd 5348 |
. . 3
⊢ (𝜑 → 𝑋 Fn ω) |
48 | 30 | ffnd 5348 |
. . 3
⊢ (𝜑 → 𝑌 Fn ω) |
49 | | eqfnfv 5593 |
. . 3
⊢ ((𝑋 Fn ω ∧ 𝑌 Fn ω) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖))) |
50 | 47, 48, 49 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖))) |
51 | 35 | ralrimiva 2543 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ ω if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o) |
52 | 10 | fnmpt 5324 |
. . . 4
⊢
(∀𝑖 ∈
ω if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o → 𝐷 Fn
ω) |
53 | 51, 52 | syl 14 |
. . 3
⊢ (𝜑 → 𝐷 Fn ω) |
54 | | eqidd 2171 |
. . 3
⊢ (𝑗 = 𝑖 → 1o =
1o) |
55 | | 1onn 6499 |
. . . 4
⊢
1o ∈ ω |
56 | 55 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 1o ∈
ω) |
57 | 55 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
ω) |
58 | 53, 54, 56, 57 | fnmptfvd 5600 |
. 2
⊢ (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑗 ∈ ω
(𝐷‘𝑗) = 1o)) |
59 | 46, 50, 58 | 3bitr4d 219 |
1
⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦
1o))) |