ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlemd GIF version

Theorem nninfwlporlemd 7190
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x (𝜑𝑋:ω⟶2o)
nninfwlporlem.y (𝜑𝑌:ω⟶2o)
nninfwlporlem.d 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
Assertion
Ref Expression
nninfwlporlemd (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem nninfwlporlemd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1n0 6452 . . . . . . . . 9 1o ≠ ∅
21neii 2362 . . . . . . . 8 ¬ 1o = ∅
32intnan 930 . . . . . . 7 ¬ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)
43biorfi 747 . . . . . 6 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
5 eqid 2189 . . . . . . . 8 1o = 1o
65biantru 302 . . . . . . 7 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o))
76orbi1i 764 . . . . . 6 (((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
84, 7bitri 184 . . . . 5 ((𝑋𝑖) = (𝑌𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
9 eqcom 2191 . . . . . 6 (1o = (𝐷𝑖) ↔ (𝐷𝑖) = 1o)
10 nninfwlporlem.d . . . . . . . . . 10 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
11 fveq2 5531 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑋𝑖) = (𝑋𝑗))
12 fveq2 5531 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑌𝑖) = (𝑌𝑗))
1311, 12eqeq12d 2204 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋𝑗) = (𝑌𝑗)))
1413ifbid 3570 . . . . . . . . . . 11 (𝑖 = 𝑗 → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) = if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1514cbvmptv 4114 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)) = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1610, 15eqtri 2210 . . . . . . . . 9 𝐷 = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
17 fveq2 5531 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑋𝑗) = (𝑋𝑖))
18 fveq2 5531 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
1917, 18eqeq12d 2204 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑋𝑗) = (𝑌𝑗) ↔ (𝑋𝑖) = (𝑌𝑖)))
2019ifbid 3570 . . . . . . . . 9 (𝑗 = 𝑖 → if((𝑋𝑗) = (𝑌𝑗), 1o, ∅) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
21 simpr 110 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
22 1lt2o 6462 . . . . . . . . . . 11 1o ∈ 2o
2322a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
24 0lt2o 6461 . . . . . . . . . . 11 ∅ ∈ 2o
2524a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
26 2ssom 6544 . . . . . . . . . . . 12 2o ⊆ ω
27 nninfwlporlem.x . . . . . . . . . . . . 13 (𝜑𝑋:ω⟶2o)
2827ffvelcdmda 5668 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ 2o)
2926, 28sselid 3168 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ ω)
30 nninfwlporlem.y . . . . . . . . . . . . 13 (𝜑𝑌:ω⟶2o)
3130ffvelcdmda 5668 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ 2o)
3226, 31sselid 3168 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ ω)
33 nndceq 6519 . . . . . . . . . . 11 (((𝑋𝑖) ∈ ω ∧ (𝑌𝑖) ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3429, 32, 33syl2anc 411 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3523, 25, 34ifcldcd 3585 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
3616, 20, 21, 35fvmptd3 5626 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝐷𝑖) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
3736eqeq2d 2201 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ 1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)))
38 eqifdc 3584 . . . . . . . 8 (DECID (𝑋𝑖) = (𝑌𝑖) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
3934, 38syl 14 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
4037, 39bitrd 188 . . . . . 6 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
419, 40bitr3id 194 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐷𝑖) = 1o ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
428, 41bitr4id 199 . . . 4 ((𝜑𝑖 ∈ ω) → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝐷𝑖) = 1o))
4342ralbidva 2486 . . 3 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ ω (𝐷𝑖) = 1o))
44 fveqeq2 5540 . . . 4 (𝑖 = 𝑗 → ((𝐷𝑖) = 1o ↔ (𝐷𝑗) = 1o))
4544cbvralv 2718 . . 3 (∀𝑖 ∈ ω (𝐷𝑖) = 1o ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o)
4643, 45bitrdi 196 . 2 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
4727ffnd 5382 . . 3 (𝜑𝑋 Fn ω)
4830ffnd 5382 . . 3 (𝜑𝑌 Fn ω)
49 eqfnfv 5630 . . 3 ((𝑋 Fn ω ∧ 𝑌 Fn ω) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5047, 48, 49syl2anc 411 . 2 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5135ralrimiva 2563 . . . 4 (𝜑 → ∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
5210fnmpt 5358 . . . 4 (∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o𝐷 Fn ω)
5351, 52syl 14 . . 3 (𝜑𝐷 Fn ω)
54 eqidd 2190 . . 3 (𝑗 = 𝑖 → 1o = 1o)
55 1onn 6540 . . . 4 1o ∈ ω
5655a1i 9 . . 3 ((𝜑𝑗 ∈ ω) → 1o ∈ ω)
5755a1i 9 . . 3 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
5853, 54, 56, 57fnmptfvd 5637 . 2 (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
5946, 50, 583bitr4d 220 1 (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2160  wral 2468  c0 3437  ifcif 3549  cmpt 4079  ωcom 4604   Fn wfn 5227  wf 5228  cfv 5232  1oc1o 6429  2oc2o 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-fv 5240  df-1o 6436  df-2o 6437
This theorem is referenced by:  nninfwlporlem  7191
  Copyright terms: Public domain W3C validator