ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlemd GIF version

Theorem nninfwlporlemd 7247
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x (𝜑𝑋:ω⟶2o)
nninfwlporlem.y (𝜑𝑌:ω⟶2o)
nninfwlporlem.d 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
Assertion
Ref Expression
nninfwlporlemd (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem nninfwlporlemd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1n0 6499 . . . . . . . . 9 1o ≠ ∅
21neii 2369 . . . . . . . 8 ¬ 1o = ∅
32intnan 930 . . . . . . 7 ¬ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)
43biorfi 747 . . . . . 6 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
5 eqid 2196 . . . . . . . 8 1o = 1o
65biantru 302 . . . . . . 7 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o))
76orbi1i 764 . . . . . 6 (((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
84, 7bitri 184 . . . . 5 ((𝑋𝑖) = (𝑌𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
9 eqcom 2198 . . . . . 6 (1o = (𝐷𝑖) ↔ (𝐷𝑖) = 1o)
10 nninfwlporlem.d . . . . . . . . . 10 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
11 fveq2 5561 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑋𝑖) = (𝑋𝑗))
12 fveq2 5561 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑌𝑖) = (𝑌𝑗))
1311, 12eqeq12d 2211 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋𝑗) = (𝑌𝑗)))
1413ifbid 3583 . . . . . . . . . . 11 (𝑖 = 𝑗 → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) = if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1514cbvmptv 4130 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)) = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1610, 15eqtri 2217 . . . . . . . . 9 𝐷 = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
17 fveq2 5561 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑋𝑗) = (𝑋𝑖))
18 fveq2 5561 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
1917, 18eqeq12d 2211 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑋𝑗) = (𝑌𝑗) ↔ (𝑋𝑖) = (𝑌𝑖)))
2019ifbid 3583 . . . . . . . . 9 (𝑗 = 𝑖 → if((𝑋𝑗) = (𝑌𝑗), 1o, ∅) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
21 simpr 110 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
22 1lt2o 6509 . . . . . . . . . . 11 1o ∈ 2o
2322a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
24 0lt2o 6508 . . . . . . . . . . 11 ∅ ∈ 2o
2524a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
26 2ssom 6591 . . . . . . . . . . . 12 2o ⊆ ω
27 nninfwlporlem.x . . . . . . . . . . . . 13 (𝜑𝑋:ω⟶2o)
2827ffvelcdmda 5700 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ 2o)
2926, 28sselid 3182 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ ω)
30 nninfwlporlem.y . . . . . . . . . . . . 13 (𝜑𝑌:ω⟶2o)
3130ffvelcdmda 5700 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ 2o)
3226, 31sselid 3182 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ ω)
33 nndceq 6566 . . . . . . . . . . 11 (((𝑋𝑖) ∈ ω ∧ (𝑌𝑖) ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3429, 32, 33syl2anc 411 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3523, 25, 34ifcldcd 3598 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
3616, 20, 21, 35fvmptd3 5658 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝐷𝑖) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
3736eqeq2d 2208 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ 1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)))
38 eqifdc 3597 . . . . . . . 8 (DECID (𝑋𝑖) = (𝑌𝑖) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
3934, 38syl 14 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
4037, 39bitrd 188 . . . . . 6 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
419, 40bitr3id 194 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐷𝑖) = 1o ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
428, 41bitr4id 199 . . . 4 ((𝜑𝑖 ∈ ω) → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝐷𝑖) = 1o))
4342ralbidva 2493 . . 3 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ ω (𝐷𝑖) = 1o))
44 fveqeq2 5570 . . . 4 (𝑖 = 𝑗 → ((𝐷𝑖) = 1o ↔ (𝐷𝑗) = 1o))
4544cbvralv 2729 . . 3 (∀𝑖 ∈ ω (𝐷𝑖) = 1o ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o)
4643, 45bitrdi 196 . 2 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
4727ffnd 5411 . . 3 (𝜑𝑋 Fn ω)
4830ffnd 5411 . . 3 (𝜑𝑌 Fn ω)
49 eqfnfv 5662 . . 3 ((𝑋 Fn ω ∧ 𝑌 Fn ω) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5047, 48, 49syl2anc 411 . 2 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5135ralrimiva 2570 . . . 4 (𝜑 → ∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
5210fnmpt 5387 . . . 4 (∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o𝐷 Fn ω)
5351, 52syl 14 . . 3 (𝜑𝐷 Fn ω)
54 eqidd 2197 . . 3 (𝑗 = 𝑖 → 1o = 1o)
55 1onn 6587 . . . 4 1o ∈ ω
5655a1i 9 . . 3 ((𝜑𝑗 ∈ ω) → 1o ∈ ω)
5755a1i 9 . . 3 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
5853, 54, 56, 57fnmptfvd 5669 . 2 (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
5946, 50, 583bitr4d 220 1 (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  c0 3451  ifcif 3562  cmpt 4095  ωcom 4627   Fn wfn 5254  wf 5255  cfv 5259  1oc1o 6476  2oc2o 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-1o 6483  df-2o 6484
This theorem is referenced by:  nninfwlporlem  7248
  Copyright terms: Public domain W3C validator