| Step | Hyp | Ref
| Expression |
| 1 | | 1n0 6490 |
. . . . . . . . 9
⊢
1o ≠ ∅ |
| 2 | 1 | neii 2369 |
. . . . . . . 8
⊢ ¬
1o = ∅ |
| 3 | 2 | intnan 930 |
. . . . . . 7
⊢ ¬
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅) |
| 4 | 3 | biorfi 747 |
. . . . . 6
⊢ ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ ((𝑋‘𝑖) = (𝑌‘𝑖) ∨ (¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅))) |
| 5 | | eqid 2196 |
. . . . . . . 8
⊢
1o = 1o |
| 6 | 5 | biantru 302 |
. . . . . . 7
⊢ ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ ((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
1o)) |
| 7 | 6 | orbi1i 764 |
. . . . . 6
⊢ (((𝑋‘𝑖) = (𝑌‘𝑖) ∨ (¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = ∅)) ↔
(((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅))) |
| 8 | 4, 7 | bitri 184 |
. . . . 5
⊢ ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅))) |
| 9 | | eqcom 2198 |
. . . . . 6
⊢
(1o = (𝐷‘𝑖) ↔ (𝐷‘𝑖) = 1o) |
| 10 | | nninfwlporlem.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝑖 ∈ ω ↦ if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
| 11 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑋‘𝑖) = (𝑋‘𝑗)) |
| 12 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑌‘𝑖) = (𝑌‘𝑗)) |
| 13 | 11, 12 | eqeq12d 2211 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (𝑋‘𝑗) = (𝑌‘𝑗))) |
| 14 | 13 | ifbid 3582 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) = if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅)) |
| 15 | 14 | cbvmptv 4129 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ω ↦
if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) = (𝑗 ∈ ω ↦
if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅)) |
| 16 | 10, 15 | eqtri 2217 |
. . . . . . . . 9
⊢ 𝐷 = (𝑗 ∈ ω ↦ if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅)) |
| 17 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑋‘𝑗) = (𝑋‘𝑖)) |
| 18 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 19 | 17, 18 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → ((𝑋‘𝑗) = (𝑌‘𝑗) ↔ (𝑋‘𝑖) = (𝑌‘𝑖))) |
| 20 | 19 | ifbid 3582 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → if((𝑋‘𝑗) = (𝑌‘𝑗), 1o, ∅) = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
| 21 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 𝑖 ∈ ω) |
| 22 | | 1lt2o 6500 |
. . . . . . . . . . 11
⊢
1o ∈ 2o |
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
2o) |
| 24 | | 0lt2o 6499 |
. . . . . . . . . . 11
⊢ ∅
∈ 2o |
| 25 | 24 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∅ ∈
2o) |
| 26 | | 2ssom 6582 |
. . . . . . . . . . . 12
⊢
2o ⊆ ω |
| 27 | | nninfwlporlem.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋:ω⟶2o) |
| 28 | 27 | ffvelcdmda 5697 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑋‘𝑖) ∈ 2o) |
| 29 | 26, 28 | sselid 3181 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑋‘𝑖) ∈ ω) |
| 30 | | nninfwlporlem.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌:ω⟶2o) |
| 31 | 30 | ffvelcdmda 5697 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑌‘𝑖) ∈ 2o) |
| 32 | 26, 31 | sselid 3181 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑌‘𝑖) ∈ ω) |
| 33 | | nndceq 6557 |
. . . . . . . . . . 11
⊢ (((𝑋‘𝑖) ∈ ω ∧ (𝑌‘𝑖) ∈ ω) → DECID
(𝑋‘𝑖) = (𝑌‘𝑖)) |
| 34 | 29, 32, 33 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → DECID
(𝑋‘𝑖) = (𝑌‘𝑖)) |
| 35 | 23, 25, 34 | ifcldcd 3597 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o) |
| 36 | 16, 20, 21, 35 | fvmptd3 5655 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝐷‘𝑖) = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅)) |
| 37 | 36 | eqeq2d 2208 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (1o =
(𝐷‘𝑖) ↔ 1o = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅))) |
| 38 | | eqifdc 3596 |
. . . . . . . 8
⊢
(DECID (𝑋‘𝑖) = (𝑌‘𝑖) → (1o = if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
| 39 | 34, 38 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (1o =
if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
| 40 | 37, 39 | bitrd 188 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (1o =
(𝐷‘𝑖) ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
| 41 | 9, 40 | bitr3id 194 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ((𝐷‘𝑖) = 1o ↔ (((𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o = 1o) ∨
(¬ (𝑋‘𝑖) = (𝑌‘𝑖) ∧ 1o =
∅)))) |
| 42 | 8, 41 | bitr4id 199 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (𝐷‘𝑖) = 1o)) |
| 43 | 42 | ralbidva 2493 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ∀𝑖 ∈ ω (𝐷‘𝑖) = 1o)) |
| 44 | | fveqeq2 5567 |
. . . 4
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖) = 1o ↔ (𝐷‘𝑗) = 1o)) |
| 45 | 44 | cbvralv 2729 |
. . 3
⊢
(∀𝑖 ∈
ω (𝐷‘𝑖) = 1o ↔
∀𝑗 ∈ ω
(𝐷‘𝑗) = 1o) |
| 46 | 43, 45 | bitrdi 196 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ∀𝑗 ∈ ω (𝐷‘𝑗) = 1o)) |
| 47 | 27 | ffnd 5408 |
. . 3
⊢ (𝜑 → 𝑋 Fn ω) |
| 48 | 30 | ffnd 5408 |
. . 3
⊢ (𝜑 → 𝑌 Fn ω) |
| 49 | | eqfnfv 5659 |
. . 3
⊢ ((𝑋 Fn ω ∧ 𝑌 Fn ω) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖))) |
| 50 | 47, 48, 49 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋‘𝑖) = (𝑌‘𝑖))) |
| 51 | 35 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ ω if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o) |
| 52 | 10 | fnmpt 5384 |
. . . 4
⊢
(∀𝑖 ∈
ω if((𝑋‘𝑖) = (𝑌‘𝑖), 1o, ∅) ∈
2o → 𝐷 Fn
ω) |
| 53 | 51, 52 | syl 14 |
. . 3
⊢ (𝜑 → 𝐷 Fn ω) |
| 54 | | eqidd 2197 |
. . 3
⊢ (𝑗 = 𝑖 → 1o =
1o) |
| 55 | | 1onn 6578 |
. . . 4
⊢
1o ∈ ω |
| 56 | 55 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 1o ∈
ω) |
| 57 | 55 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
ω) |
| 58 | 53, 54, 56, 57 | fnmptfvd 5666 |
. 2
⊢ (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔
∀𝑗 ∈ ω
(𝐷‘𝑗) = 1o)) |
| 59 | 46, 50, 58 | 3bitr4d 220 |
1
⊢ (𝜑 → (𝑋 = 𝑌 ↔ 𝐷 = (𝑖 ∈ ω ↦
1o))) |