ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlemd GIF version

Theorem nninfwlporlemd 7148
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x (𝜑𝑋:ω⟶2o)
nninfwlporlem.y (𝜑𝑌:ω⟶2o)
nninfwlporlem.d 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
Assertion
Ref Expression
nninfwlporlemd (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem nninfwlporlemd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1n0 6411 . . . . . . . . 9 1o ≠ ∅
21neii 2342 . . . . . . . 8 ¬ 1o = ∅
32intnan 924 . . . . . . 7 ¬ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)
43biorfi 741 . . . . . 6 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
5 eqid 2170 . . . . . . . 8 1o = 1o
65biantru 300 . . . . . . 7 ((𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o))
76orbi1i 758 . . . . . 6 (((𝑋𝑖) = (𝑌𝑖) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
84, 7bitri 183 . . . . 5 ((𝑋𝑖) = (𝑌𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅)))
9 eqcom 2172 . . . . . 6 (1o = (𝐷𝑖) ↔ (𝐷𝑖) = 1o)
10 nninfwlporlem.d . . . . . . . . . 10 𝐷 = (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
11 fveq2 5496 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑋𝑖) = (𝑋𝑗))
12 fveq2 5496 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑌𝑖) = (𝑌𝑗))
1311, 12eqeq12d 2185 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋𝑗) = (𝑌𝑗)))
1413ifbid 3547 . . . . . . . . . . 11 (𝑖 = 𝑗 → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) = if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1514cbvmptv 4085 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)) = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
1610, 15eqtri 2191 . . . . . . . . 9 𝐷 = (𝑗 ∈ ω ↦ if((𝑋𝑗) = (𝑌𝑗), 1o, ∅))
17 fveq2 5496 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑋𝑗) = (𝑋𝑖))
18 fveq2 5496 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
1917, 18eqeq12d 2185 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑋𝑗) = (𝑌𝑗) ↔ (𝑋𝑖) = (𝑌𝑖)))
2019ifbid 3547 . . . . . . . . 9 (𝑗 = 𝑖 → if((𝑋𝑗) = (𝑌𝑗), 1o, ∅) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
21 simpr 109 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
22 1lt2o 6421 . . . . . . . . . . 11 1o ∈ 2o
2322a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
24 0lt2o 6420 . . . . . . . . . . 11 ∅ ∈ 2o
2524a1i 9 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
26 2ssom 6503 . . . . . . . . . . . 12 2o ⊆ ω
27 nninfwlporlem.x . . . . . . . . . . . . 13 (𝜑𝑋:ω⟶2o)
2827ffvelrnda 5631 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ 2o)
2926, 28sselid 3145 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑋𝑖) ∈ ω)
30 nninfwlporlem.y . . . . . . . . . . . . 13 (𝜑𝑌:ω⟶2o)
3130ffvelrnda 5631 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ 2o)
3226, 31sselid 3145 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ω) → (𝑌𝑖) ∈ ω)
33 nndceq 6478 . . . . . . . . . . 11 (((𝑋𝑖) ∈ ω ∧ (𝑌𝑖) ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3429, 32, 33syl2anc 409 . . . . . . . . . 10 ((𝜑𝑖 ∈ ω) → DECID (𝑋𝑖) = (𝑌𝑖))
3523, 25, 34ifcldcd 3561 . . . . . . . . 9 ((𝜑𝑖 ∈ ω) → if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
3616, 20, 21, 35fvmptd3 5589 . . . . . . . 8 ((𝜑𝑖 ∈ ω) → (𝐷𝑖) = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅))
3736eqeq2d 2182 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ 1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅)))
38 eqifdc 3560 . . . . . . . 8 (DECID (𝑋𝑖) = (𝑌𝑖) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
3934, 38syl 14 . . . . . . 7 ((𝜑𝑖 ∈ ω) → (1o = if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
4037, 39bitrd 187 . . . . . 6 ((𝜑𝑖 ∈ ω) → (1o = (𝐷𝑖) ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
419, 40bitr3id 193 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐷𝑖) = 1o ↔ (((𝑋𝑖) = (𝑌𝑖) ∧ 1o = 1o) ∨ (¬ (𝑋𝑖) = (𝑌𝑖) ∧ 1o = ∅))))
428, 41bitr4id 198 . . . 4 ((𝜑𝑖 ∈ ω) → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝐷𝑖) = 1o))
4342ralbidva 2466 . . 3 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ ω (𝐷𝑖) = 1o))
44 fveqeq2 5505 . . . 4 (𝑖 = 𝑗 → ((𝐷𝑖) = 1o ↔ (𝐷𝑗) = 1o))
4544cbvralv 2696 . . 3 (∀𝑖 ∈ ω (𝐷𝑖) = 1o ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o)
4643, 45bitrdi 195 . 2 (𝜑 → (∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
4727ffnd 5348 . . 3 (𝜑𝑋 Fn ω)
4830ffnd 5348 . . 3 (𝜑𝑌 Fn ω)
49 eqfnfv 5593 . . 3 ((𝑋 Fn ω ∧ 𝑌 Fn ω) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5047, 48, 49syl2anc 409 . 2 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ ω (𝑋𝑖) = (𝑌𝑖)))
5135ralrimiva 2543 . . . 4 (𝜑 → ∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o)
5210fnmpt 5324 . . . 4 (∀𝑖 ∈ ω if((𝑋𝑖) = (𝑌𝑖), 1o, ∅) ∈ 2o𝐷 Fn ω)
5351, 52syl 14 . . 3 (𝜑𝐷 Fn ω)
54 eqidd 2171 . . 3 (𝑗 = 𝑖 → 1o = 1o)
55 1onn 6499 . . . 4 1o ∈ ω
5655a1i 9 . . 3 ((𝜑𝑗 ∈ ω) → 1o ∈ ω)
5755a1i 9 . . 3 ((𝜑𝑖 ∈ ω) → 1o ∈ ω)
5853, 54, 56, 57fnmptfvd 5600 . 2 (𝜑 → (𝐷 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑗 ∈ ω (𝐷𝑗) = 1o))
5946, 50, 583bitr4d 219 1 (𝜑 → (𝑋 = 𝑌𝐷 = (𝑖 ∈ ω ↦ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  c0 3414  ifcif 3526  cmpt 4050  ωcom 4574   Fn wfn 5193  wf 5194  cfv 5198  1oc1o 6388  2oc2o 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-1o 6395  df-2o 6396
This theorem is referenced by:  nninfwlporlem  7149
  Copyright terms: Public domain W3C validator