| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | GIF version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 640 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 672 pm3.2ni 815 pm5.16 830 intnan 931 intnanr 932 equidqe 1555 nexr 1715 ru 2997 neldifsn 3763 nvel 4177 nlim0 4441 snnex 4495 onprc 4600 dtruex 4607 ordsoexmid 4610 nprrel 4720 0xp 4755 iprc 4947 son2lpi 5079 nfunv 5304 0fv 5612 canth 5897 acexmidlema 5935 acexmidlemb 5936 acexmidlemab 5938 mpo0 6015 php5dom 6960 fi0 7077 pw1ne1 7341 pw1ne3 7342 sucpw1nel3 7345 3nelsucpw1 7346 0nnq 7477 0npr 7596 1ne0sr 7879 pnfnre 8114 mnfnre 8115 ine0 8466 inelr 8657 nn0nepnf 9366 1nuz2 9727 0nrp 9811 inftonninf 10587 lsw0 11041 eirr 12090 odd2np1 12184 n2dvds1 12223 1nprm 12436 structcnvcnv 12848 fvsetsid 12866 fnpr2ob 13172 0g0 13208 0ntop 14479 topnex 14558 bj-nvel 15833 pwle2 15935 exmidsbthrlem 15961 trirec0xor 15984 |
| Copyright terms: Public domain | W3C validator |