| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | GIF version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 640 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 671 pm3.2ni 814 pm5.16 829 intnan 930 intnanr 931 equidqe 1546 nexr 1706 ru 2988 neldifsn 3753 nvel 4167 nlim0 4430 snnex 4484 onprc 4589 dtruex 4596 ordsoexmid 4599 nprrel 4709 0xp 4744 iprc 4935 son2lpi 5067 nfunv 5292 0fv 5597 canth 5878 acexmidlema 5916 acexmidlemb 5917 acexmidlemab 5919 mpo0 5996 php5dom 6933 fi0 7050 pw1ne1 7314 pw1ne3 7315 sucpw1nel3 7318 3nelsucpw1 7319 0nnq 7450 0npr 7569 1ne0sr 7852 pnfnre 8087 mnfnre 8088 ine0 8439 inelr 8630 nn0nepnf 9339 1nuz2 9699 0nrp 9783 inftonninf 10553 eirr 11963 odd2np1 12057 n2dvds1 12096 1nprm 12309 structcnvcnv 12721 fvsetsid 12739 fnpr2ob 13044 0g0 13080 0ntop 14351 topnex 14430 bj-nvel 15651 pwle2 15753 exmidsbthrlem 15779 trirec0xor 15802 |
| Copyright terms: Public domain | W3C validator |