| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | GIF version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 640 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbi 672 pm3.2ni 815 pm5.16 830 intnan 931 intnanr 932 equidqe 1556 nexr 1716 ru 3001 neldifsn 3769 nvel 4188 nlim0 4454 snnex 4508 onprc 4613 dtruex 4620 ordsoexmid 4623 nprrel 4733 0xp 4768 iprc 4961 son2lpi 5093 nfunv 5318 0fv 5630 canth 5915 acexmidlema 5953 acexmidlemb 5954 acexmidlemab 5956 mpo0 6033 php5dom 6980 1ndom2 6982 fi0 7098 pw1ne1 7370 pw1ne3 7371 sucpw1nel3 7374 3nelsucpw1 7375 0nnq 7507 0npr 7626 1ne0sr 7909 pnfnre 8144 mnfnre 8145 ine0 8496 inelr 8687 nn0nepnf 9396 1nuz2 9757 0nrp 9841 inftonninf 10619 lsw0 11073 eirr 12175 odd2np1 12269 n2dvds1 12308 1nprm 12521 structcnvcnv 12933 fvsetsid 12951 fnpr2ob 13257 0g0 13293 0ntop 14564 topnex 14643 umgredgnlp 15826 bj-nvel 16002 pwle2 16107 exmidsbthrlem 16133 trirec0xor 16156 |
| Copyright terms: Public domain | W3C validator |