Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mto | GIF version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 629 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: mtbi 660 pm3.2ni 803 pm5.16 818 intnan 919 intnanr 920 equidqe 1520 nexr 1680 ru 2950 neldifsn 3706 nvel 4115 nlim0 4372 snnex 4426 onprc 4529 dtruex 4536 ordsoexmid 4539 nprrel 4649 0xp 4684 iprc 4872 son2lpi 5000 nfunv 5221 0fv 5521 canth 5796 acexmidlema 5833 acexmidlemb 5834 acexmidlemab 5836 mpo0 5912 php5dom 6829 fi0 6940 pw1ne1 7185 pw1ne3 7186 sucpw1nel3 7189 3nelsucpw1 7190 0nnq 7305 0npr 7424 1ne0sr 7707 pnfnre 7940 mnfnre 7941 ine0 8292 inelr 8482 nn0nepnf 9185 1nuz2 9544 0nrp 9625 inftonninf 10376 eirr 11719 odd2np1 11810 n2dvds1 11849 1nprm 12046 structcnvcnv 12410 fvsetsid 12428 0g0 12607 0ntop 12645 topnex 12726 bj-nvel 13779 pwle2 13878 exmidsbthrlem 13901 trirec0xor 13924 |
Copyright terms: Public domain | W3C validator |