Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mto | GIF version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 629 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: mtbi 660 pm3.2ni 803 pm5.16 814 intnan 915 intnanr 916 equidqe 1512 nexr 1672 ru 2936 neldifsn 3689 nvel 4097 nlim0 4353 snnex 4406 onprc 4509 dtruex 4516 ordsoexmid 4519 nprrel 4628 0xp 4663 iprc 4851 son2lpi 4979 nfunv 5200 0fv 5500 acexmidlema 5809 acexmidlemb 5810 acexmidlemab 5812 mpo0 5885 php5dom 6801 fi0 6912 pw1ne1 7147 pw1ne3 7148 sucpw1nel3 7151 3nelsucpw1 7152 0nnq 7267 0npr 7386 1ne0sr 7669 pnfnre 7902 mnfnre 7903 ine0 8252 inelr 8442 nn0nepnf 9144 1nuz2 9499 0nrp 9578 inftonninf 10322 eirr 11657 odd2np1 11745 n2dvds1 11784 1nprm 11971 structcnvcnv 12166 fvsetsid 12184 0ntop 12365 topnex 12446 bj-nnst 13291 bj-nvel 13432 pwle2 13531 exmidsbthrlem 13556 trirec0xor 13579 |
Copyright terms: Public domain | W3C validator |