| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mto | GIF version | ||
| Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| mto.1 | ⊢ ¬ 𝜓 |
| mto.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| mto | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 1, 3 | pm2.65i 642 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mtbi 674 pm3.2ni 818 pm5.16 833 intnan 934 intnanr 935 equidqe 1578 nexr 1738 ru 3027 neldifsn 3797 nvel 4216 nlim0 4484 snnex 4538 onprc 4643 dtruex 4650 ordsoexmid 4653 nprrel 4763 0xp 4798 iprc 4992 son2lpi 5124 nfunv 5350 0fv 5664 canth 5951 acexmidlema 5991 acexmidlemb 5992 acexmidlemab 5994 mpo0 6073 php5dom 7020 1ndom2 7022 fi0 7138 pw1ne1 7410 pw1ne3 7411 sucpw1nel3 7414 3nelsucpw1 7415 0nnq 7547 0npr 7666 1ne0sr 7949 pnfnre 8184 mnfnre 8185 ine0 8536 inelr 8727 nn0nepnf 9436 1nuz2 9797 0nrp 9881 inftonninf 10659 lsw0 11114 eirr 12285 odd2np1 12379 n2dvds1 12418 1nprm 12631 structcnvcnv 13043 fvsetsid 13061 fnpr2ob 13368 0g0 13404 0ntop 14675 topnex 14754 umgredgnlp 15944 bj-nvel 16218 pwle2 16323 exmidsbthrlem 16349 trirec0xor 16372 |
| Copyright terms: Public domain | W3C validator |