![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | GIF version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 | ⊢ ¬ 𝜓 |
mto.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
mto | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mto.1 | . . 3 ⊢ ¬ 𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜓) |
4 | 1, 3 | pm2.65i 639 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtbi 670 pm3.2ni 813 pm5.16 828 intnan 929 intnanr 930 equidqe 1532 nexr 1692 ru 2963 neldifsn 3724 nvel 4138 nlim0 4396 snnex 4450 onprc 4553 dtruex 4560 ordsoexmid 4563 nprrel 4673 0xp 4708 iprc 4897 son2lpi 5027 nfunv 5251 0fv 5552 canth 5831 acexmidlema 5868 acexmidlemb 5869 acexmidlemab 5871 mpo0 5947 php5dom 6865 fi0 6976 pw1ne1 7230 pw1ne3 7231 sucpw1nel3 7234 3nelsucpw1 7235 0nnq 7365 0npr 7484 1ne0sr 7767 pnfnre 8001 mnfnre 8002 ine0 8353 inelr 8543 nn0nepnf 9249 1nuz2 9608 0nrp 9691 inftonninf 10443 eirr 11788 odd2np1 11880 n2dvds1 11919 1nprm 12116 structcnvcnv 12480 fvsetsid 12498 fnpr2ob 12764 0g0 12800 0ntop 13546 topnex 13625 bj-nvel 14688 pwle2 14787 exmidsbthrlem 14809 trirec0xor 14832 |
Copyright terms: Public domain | W3C validator |