Proof of Theorem fodjum
Step | Hyp | Ref
| Expression |
1 | | fodjum.z |
. 2
⊢ (𝜑 → ∃𝑤 ∈ 𝑂 (𝑃‘𝑤) = ∅) |
2 | | 1n0 6411 |
. . . . . . . . 9
⊢
1o ≠ ∅ |
3 | 2 | nesymi 2386 |
. . . . . . . 8
⊢ ¬
∅ = 1o |
4 | 3 | intnan 924 |
. . . . . . 7
⊢ ¬
(¬ ∃𝑧 ∈
𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ =
1o) |
5 | 4 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ¬ (¬
∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ =
1o)) |
6 | | simprr 527 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → (𝑃‘𝑤) = ∅) |
7 | | fodjuf.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
8 | | fveqeq2 5505 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑦) = (inl‘𝑧) ↔ (𝐹‘𝑤) = (inl‘𝑧))) |
9 | 8 | rexbidv 2471 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧))) |
10 | 9 | ifbid 3547 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧), ∅, 1o)) |
11 | | simprl 526 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → 𝑤 ∈ 𝑂) |
12 | | peano1 4578 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
13 | 12 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ∅ ∈
ω) |
14 | | 1onn 6499 |
. . . . . . . . . . 11
⊢
1o ∈ ω |
15 | 14 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → 1o ∈
ω) |
16 | | fodjuf.fo |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
17 | 16 | fodjuomnilemdc 7120 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧)) |
18 | 17 | adantrr 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → DECID
∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧)) |
19 | 13, 15, 18 | ifcldcd 3561 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧), ∅, 1o) ∈
ω) |
20 | 7, 10, 11, 19 | fvmptd3 5589 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → (𝑃‘𝑤) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧), ∅, 1o)) |
21 | 6, 20 | eqtr3d 2205 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ∅ =
if(∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧), ∅, 1o)) |
22 | | eqifdc 3560 |
. . . . . . . 8
⊢
(DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) → (∅ = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧), ∅, 1o) ↔
((∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬
∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ =
1o)))) |
23 | 18, 22 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → (∅ =
if(∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧), ∅, 1o) ↔
((∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬
∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ =
1o)))) |
24 | 21, 23 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ((∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬
∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ =
1o))) |
25 | 5, 24 | ecased 1344 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → (∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧) ∧ ∅ = ∅)) |
26 | 25 | simpld 111 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ∃𝑧 ∈ 𝐴 (𝐹‘𝑤) = (inl‘𝑧)) |
27 | | rexm 3514 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 (𝐹‘𝑤) = (inl‘𝑧) → ∃𝑧 𝑧 ∈ 𝐴) |
28 | 26, 27 | syl 14 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ∃𝑧 𝑧 ∈ 𝐴) |
29 | | eleq1w 2231 |
. . . 4
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
30 | 29 | cbvexv 1911 |
. . 3
⊢
(∃𝑧 𝑧 ∈ 𝐴 ↔ ∃𝑥 𝑥 ∈ 𝐴) |
31 | 28, 30 | sylib 121 |
. 2
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑂 ∧ (𝑃‘𝑤) = ∅)) → ∃𝑥 𝑥 ∈ 𝐴) |
32 | 1, 31 | rexlimddv 2592 |
1
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |