ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjum GIF version

Theorem fodjum 7250
Description: Lemma for fodjuomni 7253 and fodjumkv 7264. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjum.z (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
Assertion
Ref Expression
fodjum (𝜑 → ∃𝑥 𝑥𝐴)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑤,𝐴,𝑥,𝑧   𝑦,𝐴,𝑤   𝑦,𝐹   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑤)   𝑂(𝑥,𝑤)

Proof of Theorem fodjum
StepHypRef Expression
1 fodjum.z . 2 (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
2 1n0 6520 . . . . . . . . 9 1o ≠ ∅
32nesymi 2422 . . . . . . . 8 ¬ ∅ = 1o
43intnan 931 . . . . . . 7 ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)
54a1i 9 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))
6 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = ∅)
7 fodjuf.p . . . . . . . . 9 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
8 fveqeq2 5587 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑤) = (inl‘𝑧)))
98rexbidv 2507 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧)))
109ifbid 3592 . . . . . . . . 9 (𝑦 = 𝑤 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
11 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 𝑤𝑂)
12 peano1 4643 . . . . . . . . . . 11 ∅ ∈ ω
1312a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ ∈ ω)
14 1onn 6608 . . . . . . . . . . 11 1o ∈ ω
1514a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 1o ∈ ω)
16 fodjuf.fo . . . . . . . . . . . 12 (𝜑𝐹:𝑂onto→(𝐴𝐵))
1716fodjuomnilemdc 7248 . . . . . . . . . . 11 ((𝜑𝑤𝑂) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1817adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1913, 15, 18ifcldcd 3608 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ∈ ω)
207, 10, 11, 19fvmptd3 5675 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
216, 20eqtr3d 2240 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
22 eqifdc 3607 . . . . . . . 8 (DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2318, 22syl 14 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2421, 23mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)))
255, 24ecased 1362 . . . . 5 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅))
2625simpld 112 . . . 4 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
27 rexm 3560 . . . 4 (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → ∃𝑧 𝑧𝐴)
2826, 27syl 14 . . 3 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧 𝑧𝐴)
29 eleq1w 2266 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
3029cbvexv 1942 . . 3 (∃𝑧 𝑧𝐴 ↔ ∃𝑥 𝑥𝐴)
3128, 30sylib 122 . 2 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑥 𝑥𝐴)
321, 31rexlimddv 2628 1 (𝜑 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wex 1515  wcel 2176  wrex 2485  c0 3460  ifcif 3571  cmpt 4106  ωcom 4639  ontowfo 5270  cfv 5272  1oc1o 6497  cdju 7141  inlcinl 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-dju 7142  df-inl 7151  df-inr 7152
This theorem is referenced by:  fodjuomnilemres  7252  fodjumkvlemres  7263
  Copyright terms: Public domain W3C validator