ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjum GIF version

Theorem fodjum 7205
Description: Lemma for fodjuomni 7208 and fodjumkv 7219. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjum.z (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
Assertion
Ref Expression
fodjum (𝜑 → ∃𝑥 𝑥𝐴)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑤,𝐴,𝑥,𝑧   𝑦,𝐴,𝑤   𝑦,𝐹   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑤)   𝑂(𝑥,𝑤)

Proof of Theorem fodjum
StepHypRef Expression
1 fodjum.z . 2 (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
2 1n0 6485 . . . . . . . . 9 1o ≠ ∅
32nesymi 2410 . . . . . . . 8 ¬ ∅ = 1o
43intnan 930 . . . . . . 7 ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)
54a1i 9 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))
6 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = ∅)
7 fodjuf.p . . . . . . . . 9 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
8 fveqeq2 5563 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑤) = (inl‘𝑧)))
98rexbidv 2495 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧)))
109ifbid 3578 . . . . . . . . 9 (𝑦 = 𝑤 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
11 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 𝑤𝑂)
12 peano1 4626 . . . . . . . . . . 11 ∅ ∈ ω
1312a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ ∈ ω)
14 1onn 6573 . . . . . . . . . . 11 1o ∈ ω
1514a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 1o ∈ ω)
16 fodjuf.fo . . . . . . . . . . . 12 (𝜑𝐹:𝑂onto→(𝐴𝐵))
1716fodjuomnilemdc 7203 . . . . . . . . . . 11 ((𝜑𝑤𝑂) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1817adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1913, 15, 18ifcldcd 3593 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ∈ ω)
207, 10, 11, 19fvmptd3 5651 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
216, 20eqtr3d 2228 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
22 eqifdc 3592 . . . . . . . 8 (DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2318, 22syl 14 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2421, 23mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)))
255, 24ecased 1360 . . . . 5 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅))
2625simpld 112 . . . 4 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
27 rexm 3546 . . . 4 (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → ∃𝑧 𝑧𝐴)
2826, 27syl 14 . . 3 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧 𝑧𝐴)
29 eleq1w 2254 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
3029cbvexv 1930 . . 3 (∃𝑧 𝑧𝐴 ↔ ∃𝑥 𝑥𝐴)
3128, 30sylib 122 . 2 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑥 𝑥𝐴)
321, 31rexlimddv 2616 1 (𝜑 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2164  wrex 2473  c0 3446  ifcif 3557  cmpt 4090  ωcom 4622  ontowfo 5252  cfv 5254  1oc1o 6462  cdju 7096  inlcinl 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  fodjuomnilemres  7207  fodjumkvlemres  7218
  Copyright terms: Public domain W3C validator