ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjum GIF version

Theorem fodjum 7026
Description: Lemma for fodjuomni 7029 and fodjumkv 7042. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjum.z (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
Assertion
Ref Expression
fodjum (𝜑 → ∃𝑥 𝑥𝐴)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑤,𝐴,𝑥,𝑧   𝑦,𝐴,𝑤   𝑦,𝐹   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑤)   𝑂(𝑥,𝑤)

Proof of Theorem fodjum
StepHypRef Expression
1 fodjum.z . 2 (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
2 1n0 6337 . . . . . . . . 9 1o ≠ ∅
32nesymi 2355 . . . . . . . 8 ¬ ∅ = 1o
43intnan 915 . . . . . . 7 ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)
54a1i 9 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))
6 simprr 522 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = ∅)
7 fodjuf.p . . . . . . . . 9 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
8 fveqeq2 5438 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑤) = (inl‘𝑧)))
98rexbidv 2439 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧)))
109ifbid 3498 . . . . . . . . 9 (𝑦 = 𝑤 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
11 simprl 521 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 𝑤𝑂)
12 peano1 4516 . . . . . . . . . . 11 ∅ ∈ ω
1312a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ ∈ ω)
14 1onn 6424 . . . . . . . . . . 11 1o ∈ ω
1514a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 1o ∈ ω)
16 fodjuf.fo . . . . . . . . . . . 12 (𝜑𝐹:𝑂onto→(𝐴𝐵))
1716fodjuomnilemdc 7024 . . . . . . . . . . 11 ((𝜑𝑤𝑂) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1817adantrr 471 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1913, 15, 18ifcldcd 3512 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ∈ ω)
207, 10, 11, 19fvmptd3 5522 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
216, 20eqtr3d 2175 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
22 eqifdc 3511 . . . . . . . 8 (DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2318, 22syl 14 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2421, 23mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)))
255, 24ecased 1328 . . . . 5 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅))
2625simpld 111 . . . 4 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
27 rexm 3467 . . . 4 (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → ∃𝑧 𝑧𝐴)
2826, 27syl 14 . . 3 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧 𝑧𝐴)
29 eleq1w 2201 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
3029cbvexv 1891 . . 3 (∃𝑧 𝑧𝐴 ↔ ∃𝑥 𝑥𝐴)
3128, 30sylib 121 . 2 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑥 𝑥𝐴)
321, 31rexlimddv 2557 1 (𝜑 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1332  wex 1469  wcel 1481  wrex 2418  c0 3368  ifcif 3479  cmpt 3997  ωcom 4512  ontowfo 5129  cfv 5131  1oc1o 6314  cdju 6930  inlcinl 6938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by:  fodjuomnilemres  7028  fodjumkvlemres  7041
  Copyright terms: Public domain W3C validator