| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6lcm4e12 | GIF version | ||
| Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 9180 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 4cn 9176 | . . . 4 ⊢ 4 ∈ ℂ | |
| 3 | 1, 2 | mulcli 8139 | . . 3 ⊢ (6 · 4) ∈ ℂ |
| 4 | 6nn0 9378 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 5 | 4 | nn0zi 9456 | . . . 4 ⊢ 6 ∈ ℤ |
| 6 | 4z 9464 | . . . 4 ⊢ 4 ∈ ℤ | |
| 7 | lcmcl 12580 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9412 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
| 9 | 5, 6, 8 | mp2an 426 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
| 10 | gcdcl 12473 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
| 11 | 10 | nn0cnd 9412 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
| 12 | 5, 6, 11 | mp2an 426 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
| 13 | 5, 6 | pm3.2i 272 | . . . . . . 7 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
| 14 | 4ne0 9196 | . . . . . . . . 9 ⊢ 4 ≠ 0 | |
| 15 | 14 | neii 2402 | . . . . . . . 8 ⊢ ¬ 4 = 0 |
| 16 | 15 | intnan 934 | . . . . . . 7 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
| 17 | gcdn0cl 12469 | . . . . . . 7 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
| 18 | 13, 16, 17 | mp2an 426 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℕ |
| 19 | 18 | nnne0i 9130 | . . . . 5 ⊢ (6 gcd 4) ≠ 0 |
| 20 | 18 | nnzi 9455 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℤ |
| 21 | 0z 9445 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 22 | zapne 9509 | . . . . . 6 ⊢ (((6 gcd 4) ∈ ℤ ∧ 0 ∈ ℤ) → ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0)) | |
| 23 | 20, 21, 22 | mp2an 426 | . . . . 5 ⊢ ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0) |
| 24 | 19, 23 | mpbir 146 | . . . 4 ⊢ (6 gcd 4) # 0 |
| 25 | 12, 24 | pm3.2i 272 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0) |
| 26 | 6nn 9264 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 27 | 4nn 9262 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 28 | 26, 27 | pm3.2i 272 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
| 29 | lcmgcdnn 12590 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
| 30 | 28, 29 | mp1i 10 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
| 31 | 30 | eqcomd 2235 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
| 32 | divmulap3 8812 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
| 33 | 31, 32 | mpbird 167 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
| 34 | 33 | eqcomd 2235 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
| 35 | 3, 9, 25, 34 | mp3an 1371 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
| 36 | 6gcd4e2 12502 | . . 3 ⊢ (6 gcd 4) = 2 | |
| 37 | 36 | oveq2i 6005 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
| 38 | 2cn 9169 | . . . 4 ⊢ 2 ∈ ℂ | |
| 39 | 2ap0 9191 | . . . 4 ⊢ 2 # 0 | |
| 40 | 1, 2, 38, 39 | divassapi 8903 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
| 41 | 4d2e2 9259 | . . . 4 ⊢ (4 / 2) = 2 | |
| 42 | 41 | oveq2i 6005 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
| 43 | 6t2e12 9669 | . . 3 ⊢ (6 · 2) = ;12 | |
| 44 | 40, 42, 43 | 3eqtri 2254 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
| 45 | 35, 37, 44 | 3eqtri 2254 | 1 ⊢ (6 lcm 4) = ;12 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4082 (class class class)co 5994 ℂcc 7985 0cc0 7987 1c1 7988 · cmul 7992 # cap 8716 / cdiv 8807 ℕcn 9098 2c2 9149 4c4 9151 6c6 9153 ℤcz 9434 ;cdc 9566 gcd cgcd 12460 lcm clcm 12568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-lcm 12569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |