Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6lcm4e12 | GIF version |
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 8960 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 4cn 8956 | . . . 4 ⊢ 4 ∈ ℂ | |
3 | 1, 2 | mulcli 7925 | . . 3 ⊢ (6 · 4) ∈ ℂ |
4 | 6nn0 9156 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
5 | 4 | nn0zi 9234 | . . . 4 ⊢ 6 ∈ ℤ |
6 | 4z 9242 | . . . 4 ⊢ 4 ∈ ℤ | |
7 | lcmcl 12026 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
8 | 7 | nn0cnd 9190 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
9 | 5, 6, 8 | mp2an 424 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
10 | gcdcl 11921 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
11 | 10 | nn0cnd 9190 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
12 | 5, 6, 11 | mp2an 424 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
13 | 5, 6 | pm3.2i 270 | . . . . . . 7 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
14 | 4ne0 8976 | . . . . . . . . 9 ⊢ 4 ≠ 0 | |
15 | 14 | neii 2342 | . . . . . . . 8 ⊢ ¬ 4 = 0 |
16 | 15 | intnan 924 | . . . . . . 7 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
17 | gcdn0cl 11917 | . . . . . . 7 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
18 | 13, 16, 17 | mp2an 424 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℕ |
19 | 18 | nnne0i 8910 | . . . . 5 ⊢ (6 gcd 4) ≠ 0 |
20 | 18 | nnzi 9233 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℤ |
21 | 0z 9223 | . . . . . 6 ⊢ 0 ∈ ℤ | |
22 | zapne 9286 | . . . . . 6 ⊢ (((6 gcd 4) ∈ ℤ ∧ 0 ∈ ℤ) → ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0)) | |
23 | 20, 21, 22 | mp2an 424 | . . . . 5 ⊢ ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0) |
24 | 19, 23 | mpbir 145 | . . . 4 ⊢ (6 gcd 4) # 0 |
25 | 12, 24 | pm3.2i 270 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0) |
26 | 6nn 9043 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
27 | 4nn 9041 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
28 | 26, 27 | pm3.2i 270 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
29 | lcmgcdnn 12036 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
30 | 28, 29 | mp1i 10 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
31 | 30 | eqcomd 2176 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
32 | divmulap3 8594 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
33 | 31, 32 | mpbird 166 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
34 | 33 | eqcomd 2176 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
35 | 3, 9, 25, 34 | mp3an 1332 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
36 | 6gcd4e2 11950 | . . 3 ⊢ (6 gcd 4) = 2 | |
37 | 36 | oveq2i 5864 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
38 | 2cn 8949 | . . . 4 ⊢ 2 ∈ ℂ | |
39 | 2ap0 8971 | . . . 4 ⊢ 2 # 0 | |
40 | 1, 2, 38, 39 | divassapi 8685 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
41 | 4d2e2 9038 | . . . 4 ⊢ (4 / 2) = 2 | |
42 | 41 | oveq2i 5864 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
43 | 6t2e12 9446 | . . 3 ⊢ (6 · 2) = ;12 | |
44 | 40, 42, 43 | 3eqtri 2195 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
45 | 35, 37, 44 | 3eqtri 2195 | 1 ⊢ (6 lcm 4) = ;12 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 · cmul 7779 # cap 8500 / cdiv 8589 ℕcn 8878 2c2 8929 4c4 8931 6c6 8933 ℤcz 9212 ;cdc 9343 gcd cgcd 11897 lcm clcm 12014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-dec 9344 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-gcd 11898 df-lcm 12015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |