ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6lcm4e12 GIF version

Theorem 6lcm4e12 12081
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6lcm4e12 (6 lcm 4) = 12

Proof of Theorem 6lcm4e12
StepHypRef Expression
1 6cn 8999 . . . 4 6 ∈ ℂ
2 4cn 8995 . . . 4 4 ∈ ℂ
31, 2mulcli 7961 . . 3 (6 · 4) ∈ ℂ
4 6nn0 9195 . . . . 5 6 ∈ ℕ0
54nn0zi 9273 . . . 4 6 ∈ ℤ
6 4z 9281 . . . 4 4 ∈ ℤ
7 lcmcl 12066 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0)
87nn0cnd 9229 . . . 4 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ)
95, 6, 8mp2an 426 . . 3 (6 lcm 4) ∈ ℂ
10 gcdcl 11961 . . . . . 6 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0)
1110nn0cnd 9229 . . . . 5 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ)
125, 6, 11mp2an 426 . . . 4 (6 gcd 4) ∈ ℂ
135, 6pm3.2i 272 . . . . . . 7 (6 ∈ ℤ ∧ 4 ∈ ℤ)
14 4ne0 9015 . . . . . . . . 9 4 ≠ 0
1514neii 2349 . . . . . . . 8 ¬ 4 = 0
1615intnan 929 . . . . . . 7 ¬ (6 = 0 ∧ 4 = 0)
17 gcdn0cl 11957 . . . . . . 7 (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ)
1813, 16, 17mp2an 426 . . . . . 6 (6 gcd 4) ∈ ℕ
1918nnne0i 8949 . . . . 5 (6 gcd 4) ≠ 0
2018nnzi 9272 . . . . . 6 (6 gcd 4) ∈ ℤ
21 0z 9262 . . . . . 6 0 ∈ ℤ
22 zapne 9325 . . . . . 6 (((6 gcd 4) ∈ ℤ ∧ 0 ∈ ℤ) → ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0))
2320, 21, 22mp2an 426 . . . . 5 ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0)
2419, 23mpbir 146 . . . 4 (6 gcd 4) # 0
2512, 24pm3.2i 272 . . 3 ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)
26 6nn 9082 . . . . . . . 8 6 ∈ ℕ
27 4nn 9080 . . . . . . . 8 4 ∈ ℕ
2826, 27pm3.2i 272 . . . . . . 7 (6 ∈ ℕ ∧ 4 ∈ ℕ)
29 lcmgcdnn 12076 . . . . . . 7 ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
3028, 29mp1i 10 . . . . . 6 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4))
3130eqcomd 2183 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4)))
32 divmulap3 8632 . . . . 5 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4))))
3331, 32mpbird 167 . . . 4 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4))
3433eqcomd 2183 . . 3 (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4)))
353, 9, 25, 34mp3an 1337 . 2 (6 lcm 4) = ((6 · 4) / (6 gcd 4))
36 6gcd4e2 11990 . . 3 (6 gcd 4) = 2
3736oveq2i 5885 . 2 ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2)
38 2cn 8988 . . . 4 2 ∈ ℂ
39 2ap0 9010 . . . 4 2 # 0
401, 2, 38, 39divassapi 8723 . . 3 ((6 · 4) / 2) = (6 · (4 / 2))
41 4d2e2 9077 . . . 4 (4 / 2) = 2
4241oveq2i 5885 . . 3 (6 · (4 / 2)) = (6 · 2)
43 6t2e12 9485 . . 3 (6 · 2) = 12
4440, 42, 433eqtri 2202 . 2 ((6 · 4) / 2) = 12
4535, 37, 443eqtri 2202 1 (6 lcm 4) = 12
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4003  (class class class)co 5874  cc 7808  0cc0 7810  1c1 7811   · cmul 7815   # cap 8536   / cdiv 8627  cn 8917  2c2 8968  4c4 8970  6c6 8972  cz 9251  cdc 9382   gcd cgcd 11937   lcm clcm 12054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-sup 6982  df-inf 6983  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-5 8979  df-6 8980  df-7 8981  df-8 8982  df-9 8983  df-n0 9175  df-z 9252  df-dec 9383  df-uz 9527  df-q 9618  df-rp 9652  df-fz 10007  df-fzo 10140  df-fl 10267  df-mod 10320  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-dvds 11790  df-gcd 11938  df-lcm 12055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator