| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6lcm4e12 | GIF version | ||
| Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn 9131 | . . . 4 ⊢ 6 ∈ ℂ | |
| 2 | 4cn 9127 | . . . 4 ⊢ 4 ∈ ℂ | |
| 3 | 1, 2 | mulcli 8090 | . . 3 ⊢ (6 · 4) ∈ ℂ |
| 4 | 6nn0 9329 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 5 | 4 | nn0zi 9407 | . . . 4 ⊢ 6 ∈ ℤ |
| 6 | 4z 9415 | . . . 4 ⊢ 4 ∈ ℤ | |
| 7 | lcmcl 12444 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
| 8 | 7 | nn0cnd 9363 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
| 9 | 5, 6, 8 | mp2an 426 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
| 10 | gcdcl 12337 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
| 11 | 10 | nn0cnd 9363 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
| 12 | 5, 6, 11 | mp2an 426 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
| 13 | 5, 6 | pm3.2i 272 | . . . . . . 7 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
| 14 | 4ne0 9147 | . . . . . . . . 9 ⊢ 4 ≠ 0 | |
| 15 | 14 | neii 2379 | . . . . . . . 8 ⊢ ¬ 4 = 0 |
| 16 | 15 | intnan 931 | . . . . . . 7 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
| 17 | gcdn0cl 12333 | . . . . . . 7 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
| 18 | 13, 16, 17 | mp2an 426 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℕ |
| 19 | 18 | nnne0i 9081 | . . . . 5 ⊢ (6 gcd 4) ≠ 0 |
| 20 | 18 | nnzi 9406 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℤ |
| 21 | 0z 9396 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 22 | zapne 9460 | . . . . . 6 ⊢ (((6 gcd 4) ∈ ℤ ∧ 0 ∈ ℤ) → ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0)) | |
| 23 | 20, 21, 22 | mp2an 426 | . . . . 5 ⊢ ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0) |
| 24 | 19, 23 | mpbir 146 | . . . 4 ⊢ (6 gcd 4) # 0 |
| 25 | 12, 24 | pm3.2i 272 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0) |
| 26 | 6nn 9215 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
| 27 | 4nn 9213 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 28 | 26, 27 | pm3.2i 272 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
| 29 | lcmgcdnn 12454 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
| 30 | 28, 29 | mp1i 10 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
| 31 | 30 | eqcomd 2212 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
| 32 | divmulap3 8763 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
| 33 | 31, 32 | mpbird 167 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
| 34 | 33 | eqcomd 2212 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
| 35 | 3, 9, 25, 34 | mp3an 1350 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
| 36 | 6gcd4e2 12366 | . . 3 ⊢ (6 gcd 4) = 2 | |
| 37 | 36 | oveq2i 5965 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
| 38 | 2cn 9120 | . . . 4 ⊢ 2 ∈ ℂ | |
| 39 | 2ap0 9142 | . . . 4 ⊢ 2 # 0 | |
| 40 | 1, 2, 38, 39 | divassapi 8854 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
| 41 | 4d2e2 9210 | . . . 4 ⊢ (4 / 2) = 2 | |
| 42 | 41 | oveq2i 5965 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
| 43 | 6t2e12 9620 | . . 3 ⊢ (6 · 2) = ;12 | |
| 44 | 40, 42, 43 | 3eqtri 2231 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
| 45 | 35, 37, 44 | 3eqtri 2231 | 1 ⊢ (6 lcm 4) = ;12 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4048 (class class class)co 5954 ℂcc 7936 0cc0 7938 1c1 7939 · cmul 7943 # cap 8667 / cdiv 8758 ℕcn 9049 2c2 9100 4c4 9102 6c6 9104 ℤcz 9385 ;cdc 9517 gcd cgcd 12324 lcm clcm 12432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-z 9386 df-dec 9518 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-dvds 12149 df-gcd 12325 df-lcm 12433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |