ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm GIF version

Theorem 3lcm2e6woprm 12327
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 9093 . . . 4 3 ∈ ℂ
2 2cn 9089 . . . 4 2 ∈ ℂ
31, 2mulcli 8059 . . 3 (3 · 2) ∈ ℂ
4 3z 9383 . . . 4 3 ∈ ℤ
5 2z 9382 . . . 4 2 ∈ ℤ
6 lcmcl 12313 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 9332 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 426 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 272 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 9110 . . . . . . 7 2 ≠ 0
1110neii 2377 . . . . . 6 ¬ 2 = 0
1211intnan 930 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 12202 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 9032 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 426 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 426 . . . . . 6 (3 gcd 2) ∈ ℕ
1716nnne0i 9050 . . . . 5 (3 gcd 2) ≠ 0
1816nnzi 9375 . . . . . 6 (3 gcd 2) ∈ ℤ
19 0z 9365 . . . . . 6 0 ∈ ℤ
20 zapne 9429 . . . . . 6 (((3 gcd 2) ∈ ℤ ∧ 0 ∈ ℤ) → ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0))
2118, 19, 20mp2an 426 . . . . 5 ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0)
2217, 21mpbir 146 . . . 4 (3 gcd 2) # 0
2315, 22pm3.2i 272 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)
24 3nn 9181 . . . . . . 7 3 ∈ ℕ
25 2nn 9180 . . . . . . 7 2 ∈ ℕ
2624, 25pm3.2i 272 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
27 lcmgcdnn 12323 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2827eqcomd 2210 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2926, 28mp1i 10 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
30 divmulap3 8732 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
3129, 30mpbird 167 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
3231eqcomd 2210 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
333, 8, 23, 32mp3an 1349 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
34 gcdcom 12213 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
354, 5, 34mp2an 426 . . . 4 (3 gcd 2) = (2 gcd 3)
36 1z 9380 . . . . . . . . 9 1 ∈ ℤ
37 gcdid 12226 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3836, 37ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
39 abs1 11302 . . . . . . . 8 (abs‘1) = 1
4038, 39eqtr2i 2226 . . . . . . 7 1 = (1 gcd 1)
41 gcdadd 12225 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
4236, 36, 41mp2an 426 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
43 1p1e2 9135 . . . . . . . 8 (1 + 1) = 2
4443oveq2i 5945 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4540, 42, 443eqtri 2229 . . . . . 6 1 = (1 gcd 2)
46 gcdcom 12213 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4736, 5, 46mp2an 426 . . . . . 6 (1 gcd 2) = (2 gcd 1)
48 gcdadd 12225 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
495, 36, 48mp2an 426 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
5045, 47, 493eqtri 2229 . . . . 5 1 = (2 gcd (1 + 2))
51 1p2e3 9153 . . . . . 6 (1 + 2) = 3
5251oveq2i 5945 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
5350, 52eqtr2i 2226 . . . 4 (2 gcd 3) = 1
5435, 53eqtri 2225 . . 3 (3 gcd 2) = 1
5554oveq2i 5945 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
56 3t2e6 9175 . . . 4 (3 · 2) = 6
5756oveq1i 5944 . . 3 ((3 · 2) / 1) = (6 / 1)
58 6cn 9100 . . . 4 6 ∈ ℂ
5958div1i 8795 . . 3 (6 / 1) = 6
6057, 59eqtri 2225 . 2 ((3 · 2) / 1) = 6
6133, 55, 603eqtri 2229 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wne 2375   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905  0cc0 7907  1c1 7908   + caddc 7910   · cmul 7912   # cap 8636   / cdiv 8727  cn 9018  2c2 9069  3c3 9070  6c6 9073  cz 9354  abscabs 11227   gcd cgcd 12193   lcm clcm 12301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-dvds 12018  df-gcd 12194  df-lcm 12302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator