ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm GIF version

Theorem 3lcm2e6woprm 12254
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 9065 . . . 4 3 ∈ ℂ
2 2cn 9061 . . . 4 2 ∈ ℂ
31, 2mulcli 8031 . . 3 (3 · 2) ∈ ℂ
4 3z 9355 . . . 4 3 ∈ ℤ
5 2z 9354 . . . 4 2 ∈ ℤ
6 lcmcl 12240 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 9304 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 426 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 272 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 9082 . . . . . . 7 2 ≠ 0
1110neii 2369 . . . . . 6 ¬ 2 = 0
1211intnan 930 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 12129 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 9004 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 426 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 426 . . . . . 6 (3 gcd 2) ∈ ℕ
1716nnne0i 9022 . . . . 5 (3 gcd 2) ≠ 0
1816nnzi 9347 . . . . . 6 (3 gcd 2) ∈ ℤ
19 0z 9337 . . . . . 6 0 ∈ ℤ
20 zapne 9400 . . . . . 6 (((3 gcd 2) ∈ ℤ ∧ 0 ∈ ℤ) → ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0))
2118, 19, 20mp2an 426 . . . . 5 ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0)
2217, 21mpbir 146 . . . 4 (3 gcd 2) # 0
2315, 22pm3.2i 272 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)
24 3nn 9153 . . . . . . 7 3 ∈ ℕ
25 2nn 9152 . . . . . . 7 2 ∈ ℕ
2624, 25pm3.2i 272 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
27 lcmgcdnn 12250 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2827eqcomd 2202 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2926, 28mp1i 10 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
30 divmulap3 8704 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
3129, 30mpbird 167 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
3231eqcomd 2202 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
333, 8, 23, 32mp3an 1348 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
34 gcdcom 12140 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
354, 5, 34mp2an 426 . . . 4 (3 gcd 2) = (2 gcd 3)
36 1z 9352 . . . . . . . . 9 1 ∈ ℤ
37 gcdid 12153 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3836, 37ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
39 abs1 11237 . . . . . . . 8 (abs‘1) = 1
4038, 39eqtr2i 2218 . . . . . . 7 1 = (1 gcd 1)
41 gcdadd 12152 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
4236, 36, 41mp2an 426 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
43 1p1e2 9107 . . . . . . . 8 (1 + 1) = 2
4443oveq2i 5933 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4540, 42, 443eqtri 2221 . . . . . 6 1 = (1 gcd 2)
46 gcdcom 12140 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4736, 5, 46mp2an 426 . . . . . 6 (1 gcd 2) = (2 gcd 1)
48 gcdadd 12152 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
495, 36, 48mp2an 426 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
5045, 47, 493eqtri 2221 . . . . 5 1 = (2 gcd (1 + 2))
51 1p2e3 9125 . . . . . 6 (1 + 2) = 3
5251oveq2i 5933 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
5350, 52eqtr2i 2218 . . . 4 (2 gcd 3) = 1
5435, 53eqtri 2217 . . 3 (3 gcd 2) = 1
5554oveq2i 5933 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
56 3t2e6 9147 . . . 4 (3 · 2) = 6
5756oveq1i 5932 . . 3 ((3 · 2) / 1) = (6 / 1)
58 6cn 9072 . . . 4 6 ∈ ℂ
5958div1i 8767 . . 3 (6 / 1) = 6
6057, 59eqtri 2217 . 2 ((3 · 2) / 1) = 6
6133, 55, 603eqtri 2221 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   # cap 8608   / cdiv 8699  cn 8990  2c2 9041  3c3 9042  6c6 9045  cz 9326  abscabs 11162   gcd cgcd 12120   lcm clcm 12228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-lcm 12229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator