ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm GIF version

Theorem 3lcm2e6woprm 12483
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 9131 . . . 4 3 ∈ ℂ
2 2cn 9127 . . . 4 2 ∈ ℂ
31, 2mulcli 8097 . . 3 (3 · 2) ∈ ℂ
4 3z 9421 . . . 4 3 ∈ ℤ
5 2z 9420 . . . 4 2 ∈ ℤ
6 lcmcl 12469 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 9370 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 426 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 272 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 9148 . . . . . . 7 2 ≠ 0
1110neii 2379 . . . . . 6 ¬ 2 = 0
1211intnan 931 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 12358 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 9070 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 426 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 426 . . . . . 6 (3 gcd 2) ∈ ℕ
1716nnne0i 9088 . . . . 5 (3 gcd 2) ≠ 0
1816nnzi 9413 . . . . . 6 (3 gcd 2) ∈ ℤ
19 0z 9403 . . . . . 6 0 ∈ ℤ
20 zapne 9467 . . . . . 6 (((3 gcd 2) ∈ ℤ ∧ 0 ∈ ℤ) → ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0))
2118, 19, 20mp2an 426 . . . . 5 ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0)
2217, 21mpbir 146 . . . 4 (3 gcd 2) # 0
2315, 22pm3.2i 272 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)
24 3nn 9219 . . . . . . 7 3 ∈ ℕ
25 2nn 9218 . . . . . . 7 2 ∈ ℕ
2624, 25pm3.2i 272 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
27 lcmgcdnn 12479 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2827eqcomd 2212 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2926, 28mp1i 10 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
30 divmulap3 8770 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
3129, 30mpbird 167 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
3231eqcomd 2212 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
333, 8, 23, 32mp3an 1350 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
34 gcdcom 12369 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
354, 5, 34mp2an 426 . . . 4 (3 gcd 2) = (2 gcd 3)
36 1z 9418 . . . . . . . . 9 1 ∈ ℤ
37 gcdid 12382 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3836, 37ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
39 abs1 11458 . . . . . . . 8 (abs‘1) = 1
4038, 39eqtr2i 2228 . . . . . . 7 1 = (1 gcd 1)
41 gcdadd 12381 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
4236, 36, 41mp2an 426 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
43 1p1e2 9173 . . . . . . . 8 (1 + 1) = 2
4443oveq2i 5968 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4540, 42, 443eqtri 2231 . . . . . 6 1 = (1 gcd 2)
46 gcdcom 12369 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4736, 5, 46mp2an 426 . . . . . 6 (1 gcd 2) = (2 gcd 1)
48 gcdadd 12381 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
495, 36, 48mp2an 426 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
5045, 47, 493eqtri 2231 . . . . 5 1 = (2 gcd (1 + 2))
51 1p2e3 9191 . . . . . 6 (1 + 2) = 3
5251oveq2i 5968 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
5350, 52eqtr2i 2228 . . . 4 (2 gcd 3) = 1
5435, 53eqtri 2227 . . 3 (3 gcd 2) = 1
5554oveq2i 5968 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
56 3t2e6 9213 . . . 4 (3 · 2) = 6
5756oveq1i 5967 . . 3 ((3 · 2) / 1) = (6 / 1)
58 6cn 9138 . . . 4 6 ∈ ℂ
5958div1i 8833 . . 3 (6 / 1) = 6
6057, 59eqtri 2227 . 2 ((3 · 2) / 1) = 6
6133, 55, 603eqtri 2231 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950   # cap 8674   / cdiv 8765  cn 9056  2c2 9107  3c3 9108  6c6 9111  cz 9392  abscabs 11383   gcd cgcd 12349   lcm clcm 12457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350  df-lcm 12458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator