ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm GIF version

Theorem 3lcm2e6woprm 11694
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 8763 . . . 4 3 ∈ ℂ
2 2cn 8759 . . . 4 2 ∈ ℂ
31, 2mulcli 7739 . . 3 (3 · 2) ∈ ℂ
4 3z 9051 . . . 4 3 ∈ ℤ
5 2z 9050 . . . 4 2 ∈ ℤ
6 lcmcl 11680 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 9000 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 422 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 270 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 8780 . . . . . . 7 2 ≠ 0
1110neii 2287 . . . . . 6 ¬ 2 = 0
1211intnan 899 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 11578 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 8702 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 422 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 422 . . . . . 6 (3 gcd 2) ∈ ℕ
1716nnne0i 8720 . . . . 5 (3 gcd 2) ≠ 0
1816nnzi 9043 . . . . . 6 (3 gcd 2) ∈ ℤ
19 0z 9033 . . . . . 6 0 ∈ ℤ
20 zapne 9093 . . . . . 6 (((3 gcd 2) ∈ ℤ ∧ 0 ∈ ℤ) → ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0))
2118, 19, 20mp2an 422 . . . . 5 ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0)
2217, 21mpbir 145 . . . 4 (3 gcd 2) # 0
2315, 22pm3.2i 270 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)
24 3nn 8850 . . . . . . 7 3 ∈ ℕ
25 2nn 8849 . . . . . . 7 2 ∈ ℕ
2624, 25pm3.2i 270 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
27 lcmgcdnn 11690 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2827eqcomd 2123 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2926, 28mp1i 10 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
30 divmulap3 8405 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
3129, 30mpbird 166 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
3231eqcomd 2123 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
333, 8, 23, 32mp3an 1300 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
34 gcdcom 11589 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
354, 5, 34mp2an 422 . . . 4 (3 gcd 2) = (2 gcd 3)
36 1z 9048 . . . . . . . . 9 1 ∈ ℤ
37 gcdid 11601 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3836, 37ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
39 abs1 10812 . . . . . . . 8 (abs‘1) = 1
4038, 39eqtr2i 2139 . . . . . . 7 1 = (1 gcd 1)
41 gcdadd 11600 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
4236, 36, 41mp2an 422 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
43 1p1e2 8805 . . . . . . . 8 (1 + 1) = 2
4443oveq2i 5753 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4540, 42, 443eqtri 2142 . . . . . 6 1 = (1 gcd 2)
46 gcdcom 11589 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4736, 5, 46mp2an 422 . . . . . 6 (1 gcd 2) = (2 gcd 1)
48 gcdadd 11600 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
495, 36, 48mp2an 422 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
5045, 47, 493eqtri 2142 . . . . 5 1 = (2 gcd (1 + 2))
51 1p2e3 8822 . . . . . 6 (1 + 2) = 3
5251oveq2i 5753 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
5350, 52eqtr2i 2139 . . . 4 (2 gcd 3) = 1
5435, 53eqtri 2138 . . 3 (3 gcd 2) = 1
5554oveq2i 5753 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
56 3t2e6 8844 . . . 4 (3 · 2) = 6
5756oveq1i 5752 . . 3 ((3 · 2) / 1) = (6 / 1)
58 6cn 8770 . . . 4 6 ∈ ℂ
5958div1i 8468 . . 3 (6 / 1) = 6
6057, 59eqtri 2138 . 2 ((3 · 2) / 1) = 6
6133, 55, 603eqtri 2142 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  w3a 947   = wceq 1316  wcel 1465  wne 2285   class class class wbr 3899  cfv 5093  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   + caddc 7591   · cmul 7593   # cap 8311   / cdiv 8400  cn 8688  2c2 8739  3c3 8740  6c6 8743  cz 9022  abscabs 10737   gcd cgcd 11562   lcm clcm 11668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-stab 801  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-sup 6839  df-inf 6840  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-5 8750  df-6 8751  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-fl 10011  df-mod 10064  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-dvds 11421  df-gcd 11563  df-lcm 11669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator