ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3lcm2e6woprm GIF version

Theorem 3lcm2e6woprm 12224
Description: The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
3lcm2e6woprm (3 lcm 2) = 6

Proof of Theorem 3lcm2e6woprm
StepHypRef Expression
1 3cn 9057 . . . 4 3 ∈ ℂ
2 2cn 9053 . . . 4 2 ∈ ℂ
31, 2mulcli 8024 . . 3 (3 · 2) ∈ ℂ
4 3z 9346 . . . 4 3 ∈ ℤ
5 2z 9345 . . . 4 2 ∈ ℤ
6 lcmcl 12210 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0)
76nn0cnd 9295 . . . 4 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℂ)
84, 5, 7mp2an 426 . . 3 (3 lcm 2) ∈ ℂ
94, 5pm3.2i 272 . . . . 5 (3 ∈ ℤ ∧ 2 ∈ ℤ)
10 2ne0 9074 . . . . . . 7 2 ≠ 0
1110neii 2366 . . . . . 6 ¬ 2 = 0
1211intnan 930 . . . . 5 ¬ (3 = 0 ∧ 2 = 0)
13 gcdn0cl 12099 . . . . . 6 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℕ)
1413nncnd 8996 . . . . 5 (((3 ∈ ℤ ∧ 2 ∈ ℤ) ∧ ¬ (3 = 0 ∧ 2 = 0)) → (3 gcd 2) ∈ ℂ)
159, 12, 14mp2an 426 . . . 4 (3 gcd 2) ∈ ℂ
169, 12, 13mp2an 426 . . . . . 6 (3 gcd 2) ∈ ℕ
1716nnne0i 9014 . . . . 5 (3 gcd 2) ≠ 0
1816nnzi 9338 . . . . . 6 (3 gcd 2) ∈ ℤ
19 0z 9328 . . . . . 6 0 ∈ ℤ
20 zapne 9391 . . . . . 6 (((3 gcd 2) ∈ ℤ ∧ 0 ∈ ℤ) → ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0))
2118, 19, 20mp2an 426 . . . . 5 ((3 gcd 2) # 0 ↔ (3 gcd 2) ≠ 0)
2217, 21mpbir 146 . . . 4 (3 gcd 2) # 0
2315, 22pm3.2i 272 . . 3 ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)
24 3nn 9144 . . . . . . 7 3 ∈ ℕ
25 2nn 9143 . . . . . . 7 2 ∈ ℕ
2624, 25pm3.2i 272 . . . . . 6 (3 ∈ ℕ ∧ 2 ∈ ℕ)
27 lcmgcdnn 12220 . . . . . . 7 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2))
2827eqcomd 2199 . . . . . 6 ((3 ∈ ℕ ∧ 2 ∈ ℕ) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
2926, 28mp1i 10 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 · 2) = ((3 lcm 2) · (3 gcd 2)))
30 divmulap3 8696 . . . . 5 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (((3 · 2) / (3 gcd 2)) = (3 lcm 2) ↔ (3 · 2) = ((3 lcm 2) · (3 gcd 2))))
3129, 30mpbird 167 . . . 4 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → ((3 · 2) / (3 gcd 2)) = (3 lcm 2))
3231eqcomd 2199 . . 3 (((3 · 2) ∈ ℂ ∧ (3 lcm 2) ∈ ℂ ∧ ((3 gcd 2) ∈ ℂ ∧ (3 gcd 2) # 0)) → (3 lcm 2) = ((3 · 2) / (3 gcd 2)))
333, 8, 23, 32mp3an 1348 . 2 (3 lcm 2) = ((3 · 2) / (3 gcd 2))
34 gcdcom 12110 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 gcd 2) = (2 gcd 3))
354, 5, 34mp2an 426 . . . 4 (3 gcd 2) = (2 gcd 3)
36 1z 9343 . . . . . . . . 9 1 ∈ ℤ
37 gcdid 12123 . . . . . . . . 9 (1 ∈ ℤ → (1 gcd 1) = (abs‘1))
3836, 37ax-mp 5 . . . . . . . 8 (1 gcd 1) = (abs‘1)
39 abs1 11216 . . . . . . . 8 (abs‘1) = 1
4038, 39eqtr2i 2215 . . . . . . 7 1 = (1 gcd 1)
41 gcdadd 12122 . . . . . . . 8 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → (1 gcd 1) = (1 gcd (1 + 1)))
4236, 36, 41mp2an 426 . . . . . . 7 (1 gcd 1) = (1 gcd (1 + 1))
43 1p1e2 9099 . . . . . . . 8 (1 + 1) = 2
4443oveq2i 5929 . . . . . . 7 (1 gcd (1 + 1)) = (1 gcd 2)
4540, 42, 443eqtri 2218 . . . . . 6 1 = (1 gcd 2)
46 gcdcom 12110 . . . . . . 7 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 gcd 2) = (2 gcd 1))
4736, 5, 46mp2an 426 . . . . . 6 (1 gcd 2) = (2 gcd 1)
48 gcdadd 12122 . . . . . . 7 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (2 gcd 1) = (2 gcd (1 + 2)))
495, 36, 48mp2an 426 . . . . . 6 (2 gcd 1) = (2 gcd (1 + 2))
5045, 47, 493eqtri 2218 . . . . 5 1 = (2 gcd (1 + 2))
51 1p2e3 9116 . . . . . 6 (1 + 2) = 3
5251oveq2i 5929 . . . . 5 (2 gcd (1 + 2)) = (2 gcd 3)
5350, 52eqtr2i 2215 . . . 4 (2 gcd 3) = 1
5435, 53eqtri 2214 . . 3 (3 gcd 2) = 1
5554oveq2i 5929 . 2 ((3 · 2) / (3 gcd 2)) = ((3 · 2) / 1)
56 3t2e6 9138 . . . 4 (3 · 2) = 6
5756oveq1i 5928 . . 3 ((3 · 2) / 1) = (6 / 1)
58 6cn 9064 . . . 4 6 ∈ ℂ
5958div1i 8759 . . 3 (6 / 1) = 6
6057, 59eqtri 2214 . 2 ((3 · 2) / 1) = 6
6133, 55, 603eqtri 2218 1 (3 lcm 2) = 6
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  3c3 9034  6c6 9037  cz 9317  abscabs 11141   gcd cgcd 12079   lcm clcm 12198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-lcm 12199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator