ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsn GIF version

Theorem neldifsn 3705
Description: 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2344 . 2 ¬ 𝐴𝐴
2 eldifsni 3704 . 2 (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴𝐴)
31, 2mto 652 1 ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  wne 2335  cdif 3112  {csn 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-v 2727  df-dif 3117  df-sn 3581
This theorem is referenced by:  neldifsnd  3706  findcard2s  6852  fvsetsid  12424
  Copyright terms: Public domain W3C validator