ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsn GIF version

Theorem neldifsn 3724
Description: 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2356 . 2 ¬ 𝐴𝐴
2 eldifsni 3723 . 2 (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴𝐴)
31, 2mto 662 1 ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2148  wne 2347  cdif 3128  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-sn 3600
This theorem is referenced by:  neldifsnd  3725  findcard2s  6893  fvsetsid  12499
  Copyright terms: Public domain W3C validator