ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsn GIF version

Theorem neldifsn 3762
Description: 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2384 . 2 ¬ 𝐴𝐴
2 eldifsni 3761 . 2 (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴𝐴)
31, 2mto 663 1 ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2175  wne 2375  cdif 3162  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-sn 3638
This theorem is referenced by:  neldifsnd  3763  findcard2s  6986  fvsetsid  12808
  Copyright terms: Public domain W3C validator