| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neldifsn | GIF version | ||
| Description: 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2384 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
| 2 | eldifsni 3761 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
| 3 | 1, 2 | mto 663 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2175 ≠ wne 2375 ∖ cdif 3162 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-sn 3638 |
| This theorem is referenced by: neldifsnd 3763 findcard2s 6986 fvsetsid 12808 |
| Copyright terms: Public domain | W3C validator |