Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neldifsn | GIF version |
Description: 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2344 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | eldifsni 3704 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
3 | 1, 2 | mto 652 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2136 ≠ wne 2335 ∖ cdif 3112 {csn 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-v 2727 df-dif 3117 df-sn 3581 |
This theorem is referenced by: neldifsnd 3706 findcard2s 6852 fvsetsid 12424 |
Copyright terms: Public domain | W3C validator |