| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqneqall | GIF version | ||
| Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| eqneqall | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | pm2.24 624 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝜑)) | |
| 3 | 1, 2 | biimtrid 152 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: ssprsseq 3829 eldju2ndl 7235 eldju2ndr 7236 modfzo0difsn 10612 nno 12412 prm2orodd 12643 prm23lt5 12781 dvdsprmpweqnn 12854 logbgcd1irr 15635 gausslemma2dlem0f 15727 gausslemma2dlem0i 15730 2lgs 15777 2lgsoddprm 15786 umgrnloop2 15943 uhgr2edg 15998 |
| Copyright terms: Public domain | W3C validator |