ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall GIF version

Theorem eqneqall 2385
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall (𝐴 = 𝐵 → (𝐴𝐵𝜑))

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2376 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 pm2.24 622 . 2 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜑))
31, 2biimtrid 152 1 (𝐴 = 𝐵 → (𝐴𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1372  wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2376
This theorem is referenced by:  eldju2ndl  7156  eldju2ndr  7157  modfzo0difsn  10521  nno  12136  prm2orodd  12367  prm23lt5  12505  dvdsprmpweqnn  12578  logbgcd1irr  15357  gausslemma2dlem0f  15449  gausslemma2dlem0i  15452  2lgs  15499  2lgsoddprm  15508
  Copyright terms: Public domain W3C validator