ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall GIF version

Theorem eqneqall 2350
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall (𝐴 = 𝐵 → (𝐴𝐵𝜑))

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2341 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 pm2.24 616 . 2 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜑))
31, 2syl5bi 151 1 (𝐴 = 𝐵 → (𝐴𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1348  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-ne 2341
This theorem is referenced by:  eldju2ndl  7049  eldju2ndr  7050  modfzo0difsn  10351  nno  11865  prm2orodd  12080  prm23lt5  12217  dvdsprmpweqnn  12289  logbgcd1irr  13679
  Copyright terms: Public domain W3C validator