ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall GIF version

Theorem eqneqall 2344
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall (𝐴 = 𝐵 → (𝐴𝐵𝜑))

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2335 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 pm2.24 611 . 2 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜑))
31, 2syl5bi 151 1 (𝐴 = 𝐵 → (𝐴𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1342  wne 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2335
This theorem is referenced by:  eldju2ndl  7029  eldju2ndr  7030  modfzo0difsn  10321  nno  11832  prm2orodd  12047  prm23lt5  12184  dvdsprmpweqnn  12256  logbgcd1irr  13452
  Copyright terms: Public domain W3C validator