| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqneqall | GIF version | ||
| Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| eqneqall | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | pm2.24 622 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝜑)) | |
| 3 | 1, 2 | biimtrid 152 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: eldju2ndl 7138 eldju2ndr 7139 modfzo0difsn 10487 nno 12071 prm2orodd 12294 prm23lt5 12432 dvdsprmpweqnn 12505 logbgcd1irr 15203 gausslemma2dlem0f 15295 gausslemma2dlem0i 15298 2lgs 15345 2lgsoddprm 15354 |
| Copyright terms: Public domain | W3C validator |