![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqneqall | GIF version |
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
eqneqall | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | pm2.24 622 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝜑)) | |
3 | 1, 2 | biimtrid 152 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: eldju2ndl 7133 eldju2ndr 7134 modfzo0difsn 10469 nno 12050 prm2orodd 12267 prm23lt5 12404 dvdsprmpweqnn 12477 logbgcd1irr 15140 gausslemma2dlem0f 15211 gausslemma2dlem0i 15214 2lgs 15261 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |