ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall GIF version

Theorem eqneqall 2410
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall (𝐴 = 𝐵 → (𝐴𝐵𝜑))

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2401 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 pm2.24 624 . 2 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜑))
31, 2biimtrid 152 1 (𝐴 = 𝐵 → (𝐴𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  ssprsseq  3829  eldju2ndl  7235  eldju2ndr  7236  modfzo0difsn  10612  nno  12412  prm2orodd  12643  prm23lt5  12781  dvdsprmpweqnn  12854  logbgcd1irr  15635  gausslemma2dlem0f  15727  gausslemma2dlem0i  15730  2lgs  15777  2lgsoddprm  15786  umgrnloop2  15943  uhgr2edg  15998
  Copyright terms: Public domain W3C validator