ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nnq GIF version

Theorem 0nnq 7305
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
Assertion
Ref Expression
0nnq ¬ ∅ ∈ Q

Proof of Theorem 0nnq
StepHypRef Expression
1 neirr 2345 . . 3 ¬ ∅ ≠ ∅
2 enqer 7299 . . . . 5 ~Q Er (N × N)
3 erdm 6511 . . . . 5 ( ~Q Er (N × N) → dom ~Q = (N × N))
42, 3ax-mp 5 . . . 4 dom ~Q = (N × N)
5 elqsn0 6570 . . . 4 ((dom ~Q = (N × N) ∧ ∅ ∈ ((N × N) / ~Q )) → ∅ ≠ ∅)
64, 5mpan 421 . . 3 (∅ ∈ ((N × N) / ~Q ) → ∅ ≠ ∅)
71, 6mto 652 . 2 ¬ ∅ ∈ ((N × N) / ~Q )
8 df-nqqs 7289 . . 3 Q = ((N × N) / ~Q )
98eleq2i 2233 . 2 (∅ ∈ Q ↔ ∅ ∈ ((N × N) / ~Q ))
107, 9mtbir 661 1 ¬ ∅ ∈ Q
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1343  wcel 2136  wne 2336  c0 3409   × cxp 4602  dom cdm 4604   Er wer 6498   / cqs 6500  Ncnpi 7213   ~Q ceq 7220  Qcnq 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq 7288  df-nqqs 7289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator