Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nnq | GIF version |
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) |
Ref | Expression |
---|---|
0nnq | ⊢ ¬ ∅ ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2336 | . . 3 ⊢ ¬ ∅ ≠ ∅ | |
2 | enqer 7279 | . . . . 5 ⊢ ~Q Er (N × N) | |
3 | erdm 6491 | . . . . 5 ⊢ ( ~Q Er (N × N) → dom ~Q = (N × N)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom ~Q = (N × N) |
5 | elqsn0 6550 | . . . 4 ⊢ ((dom ~Q = (N × N) ∧ ∅ ∈ ((N × N) / ~Q )) → ∅ ≠ ∅) | |
6 | 4, 5 | mpan 421 | . . 3 ⊢ (∅ ∈ ((N × N) / ~Q ) → ∅ ≠ ∅) |
7 | 1, 6 | mto 652 | . 2 ⊢ ¬ ∅ ∈ ((N × N) / ~Q ) |
8 | df-nqqs 7269 | . . 3 ⊢ Q = ((N × N) / ~Q ) | |
9 | 8 | eleq2i 2224 | . 2 ⊢ (∅ ∈ Q ↔ ∅ ∈ ((N × N) / ~Q )) |
10 | 7, 9 | mtbir 661 | 1 ⊢ ¬ ∅ ∈ Q |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∅c0 3394 × cxp 4585 dom cdm 4587 Er wer 6478 / cqs 6480 Ncnpi 7193 ~Q ceq 7200 Qcnq 7201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-iord 4327 df-on 4329 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-irdg 6318 df-oadd 6368 df-omul 6369 df-er 6481 df-ec 6483 df-qs 6487 df-ni 7225 df-mi 7227 df-enq 7268 df-nqqs 7269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |