ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nnq GIF version

Theorem 0nnq 7285
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
Assertion
Ref Expression
0nnq ¬ ∅ ∈ Q

Proof of Theorem 0nnq
StepHypRef Expression
1 neirr 2336 . . 3 ¬ ∅ ≠ ∅
2 enqer 7279 . . . . 5 ~Q Er (N × N)
3 erdm 6491 . . . . 5 ( ~Q Er (N × N) → dom ~Q = (N × N))
42, 3ax-mp 5 . . . 4 dom ~Q = (N × N)
5 elqsn0 6550 . . . 4 ((dom ~Q = (N × N) ∧ ∅ ∈ ((N × N) / ~Q )) → ∅ ≠ ∅)
64, 5mpan 421 . . 3 (∅ ∈ ((N × N) / ~Q ) → ∅ ≠ ∅)
71, 6mto 652 . 2 ¬ ∅ ∈ ((N × N) / ~Q )
8 df-nqqs 7269 . . 3 Q = ((N × N) / ~Q )
98eleq2i 2224 . 2 (∅ ∈ Q ↔ ∅ ∈ ((N × N) / ~Q ))
107, 9mtbir 661 1 ¬ ∅ ∈ Q
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1335  wcel 2128  wne 2327  c0 3394   × cxp 4585  dom cdm 4587   Er wer 6478   / cqs 6480  Ncnpi 7193   ~Q ceq 7200  Qcnq 7201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-oadd 6368  df-omul 6369  df-er 6481  df-ec 6483  df-qs 6487  df-ni 7225  df-mi 7227  df-enq 7268  df-nqqs 7269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator