ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zgt1rpn0n1 GIF version

Theorem zgt1rpn0n1 9631
Description: An integer greater than 1 is a positive real number not equal to 0 or 1. Useful for working with integer logarithm bases (which is a common case, e.g., base 2, base 3, or base 10). (Contributed by Thierry Arnoux, 26-Sep-2017.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
zgt1rpn0n1 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1))

Proof of Theorem zgt1rpn0n1
StepHypRef Expression
1 eluz2nn 9504 . . 3 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
21nnrpd 9630 . 2 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
3 eluz2n0 9508 . 2 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
4 1nuz2 9544 . . 3 ¬ 1 ∈ (ℤ‘2)
5 nelne2 2427 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ ¬ 1 ∈ (ℤ‘2)) → 𝐵 ≠ 1)
64, 5mpan2 422 . 2 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 1)
72, 3, 63jca 1167 1 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 968  wcel 2136  wne 2336  cfv 5188  0cc0 7753  1c1 7754  2c2 8908  cuz 9466  +crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590
This theorem is referenced by:  relogbval  13519  relogbzcl  13520  nnlogbexp  13527
  Copyright terms: Public domain W3C validator