| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bd | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | con3d 634 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: nelne1 2490 nelne2 2491 nssne1 3282 nssne2 3283 disjne 3545 difsn 3804 nbrne1 4101 nbrne2 4102 ac6sfi 7048 indpi 7517 zneo 9536 pc2dvds 12839 pcadd 12849 oddprmdvds 12863 4sqlem11 12910 isnzr2 14133 lssvneln0 14322 lgsne0 15702 lgsquadlem2 15742 lgsquadlem3 15743 |
| Copyright terms: Public domain | W3C validator |