![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon3bd | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | con3d 632 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: nelne1 2454 nelne2 2455 nssne1 3238 nssne2 3239 disjne 3501 difsn 3756 nbrne1 4049 nbrne2 4050 ac6sfi 6956 indpi 7404 zneo 9421 pc2dvds 12471 pcadd 12481 oddprmdvds 12495 4sqlem11 12542 isnzr2 13683 lssvneln0 13872 lgsne0 15195 lgsquadlem2 15235 lgsquadlem3 15236 |
Copyright terms: Public domain | W3C validator |