| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bd | GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | con3d 634 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: nelne1 2490 nelne2 2491 nssne1 3282 nssne2 3283 disjne 3545 difsn 3805 nbrne1 4102 nbrne2 4103 ac6sfi 7068 indpi 7537 zneo 9556 pc2dvds 12861 pcadd 12871 oddprmdvds 12885 4sqlem11 12932 isnzr2 14156 lssvneln0 14345 lgsne0 15725 lgsquadlem2 15765 lgsquadlem3 15766 |
| Copyright terms: Public domain | W3C validator |