ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd GIF version

Theorem necon3bd 2443
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1 (𝜑 → (𝐴 = 𝐵𝜓))
Assertion
Ref Expression
necon3bd (𝜑 → (¬ 𝜓𝐴𝐵))

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3 (𝜑 → (𝐴 = 𝐵𝜓))
21con3d 634 . 2 (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵))
3 df-ne 2401 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3imbitrrdi 162 1 (𝜑 → (¬ 𝜓𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  nelne1  2490  nelne2  2491  nssne1  3282  nssne2  3283  disjne  3545  difsn  3805  nbrne1  4102  nbrne2  4103  ac6sfi  7068  indpi  7537  zneo  9556  pc2dvds  12861  pcadd  12871  oddprmdvds  12885  4sqlem11  12932  isnzr2  14156  lssvneln0  14345  lgsne0  15725  lgsquadlem2  15765  lgsquadlem3  15766
  Copyright terms: Public domain W3C validator