ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd GIF version

Theorem necon3bd 2410
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1 (𝜑 → (𝐴 = 𝐵𝜓))
Assertion
Ref Expression
necon3bd (𝜑 → (¬ 𝜓𝐴𝐵))

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3 (𝜑 → (𝐴 = 𝐵𝜓))
21con3d 632 . 2 (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵))
3 df-ne 2368 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3imbitrrdi 162 1 (𝜑 → (¬ 𝜓𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2368
This theorem is referenced by:  nelne1  2457  nelne2  2458  nssne1  3242  nssne2  3243  disjne  3505  difsn  3760  nbrne1  4053  nbrne2  4054  ac6sfi  6968  indpi  7426  zneo  9444  pc2dvds  12524  pcadd  12534  oddprmdvds  12548  4sqlem11  12595  isnzr2  13816  lssvneln0  14005  lgsne0  15363  lgsquadlem2  15403  lgsquadlem3  15404
  Copyright terms: Public domain W3C validator