![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon3bd | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | con3d 631 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2348 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-ne 2348 |
This theorem is referenced by: nelne1 2437 nelne2 2438 nssne1 3215 nssne2 3216 disjne 3478 difsn 3731 nbrne1 4024 nbrne2 4025 ac6sfi 6901 indpi 7344 zneo 9357 pc2dvds 12332 pcadd 12342 oddprmdvds 12355 lssvneln0 13466 lgsne0 14579 |
Copyright terms: Public domain | W3C validator |