Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bd | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | con3d 621 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2337 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | syl6ibr 161 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2337 |
This theorem is referenced by: nelne1 2426 nelne2 2427 nssne1 3200 nssne2 3201 disjne 3462 difsn 3710 nbrne1 4001 nbrne2 4002 ac6sfi 6864 indpi 7283 zneo 9292 pc2dvds 12261 pcadd 12271 oddprmdvds 12284 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |