ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd GIF version

Theorem necon3bd 2379
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1 (𝜑 → (𝐴 = 𝐵𝜓))
Assertion
Ref Expression
necon3bd (𝜑 → (¬ 𝜓𝐴𝐵))

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3 (𝜑 → (𝐴 = 𝐵𝜓))
21con3d 621 . 2 (𝜑 → (¬ 𝜓 → ¬ 𝐴 = 𝐵))
3 df-ne 2337 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3syl6ibr 161 1 (𝜑 → (¬ 𝜓𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  nelne1  2426  nelne2  2427  nssne1  3200  nssne2  3201  disjne  3462  difsn  3710  nbrne1  4001  nbrne2  4002  ac6sfi  6864  indpi  7283  zneo  9292  pc2dvds  12261  pcadd  12271  oddprmdvds  12284  lgsne0  13579
  Copyright terms: Public domain W3C validator