ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0neqopab GIF version

Theorem 0neqopab 5887
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0neqopab ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem 0neqopab
StepHypRef Expression
1 id 19 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 4236 . . 3 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 nfopab1 4051 . . . . . 6 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
43nfel2 2321 . . . . 5 𝑥∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfn 1646 . . . 4 𝑥 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 nfopab2 4052 . . . . . . 7 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
76nfel2 2321 . . . . . 6 𝑦∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
87nfn 1646 . . . . 5 𝑦 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
9 vex 2729 . . . . . . . 8 𝑥 ∈ V
10 vex 2729 . . . . . . . 8 𝑦 ∈ V
119, 10opnzi 4213 . . . . . . 7 𝑥, 𝑦⟩ ≠ ∅
12 nesym 2381 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ≠ ∅ ↔ ¬ ∅ = ⟨𝑥, 𝑦⟩)
13 pm2.21 607 . . . . . . . 8 (¬ ∅ = ⟨𝑥, 𝑦⟩ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1412, 13sylbi 120 . . . . . . 7 (⟨𝑥, 𝑦⟩ ≠ ∅ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1511, 14ax-mp 5 . . . . . 6 (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
1615adantr 274 . . . . 5 ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
178, 16exlimi 1582 . . . 4 (∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
185, 17exlimi 1582 . . 3 (∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
192, 18sylbi 120 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
201, 19pm2.65i 629 1 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  wne 2336  c0 3409  cop 3579  {copab 4042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator