| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0neqopab | GIF version | ||
| Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) | 
| Ref | Expression | 
|---|---|
| 0neqopab | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 2 | elopab 4292 | . . 3 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 3 | nfopab1 4102 | . . . . . 6 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | 3 | nfel2 2352 | . . . . 5 ⊢ Ⅎ𝑥∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| 5 | 4 | nfn 1672 | . . . 4 ⊢ Ⅎ𝑥 ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| 6 | nfopab2 4103 | . . . . . . 7 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | 6 | nfel2 2352 | . . . . . 6 ⊢ Ⅎ𝑦∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| 8 | 7 | nfn 1672 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| 9 | vex 2766 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 10 | vex 2766 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | opnzi 4268 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ | 
| 12 | nesym 2412 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ ↔ ¬ ∅ = 〈𝑥, 𝑦〉) | |
| 13 | pm2.21 618 | . . . . . . . 8 ⊢ (¬ ∅ = 〈𝑥, 𝑦〉 → (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
| 14 | 12, 13 | sylbi 121 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | 
| 15 | 11, 14 | ax-mp 5 | . . . . . 6 ⊢ (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | 
| 16 | 15 | adantr 276 | . . . . 5 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | 
| 17 | 8, 16 | exlimi 1608 | . . . 4 ⊢ (∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | 
| 18 | 5, 17 | exlimi 1608 | . . 3 ⊢ (∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | 
| 19 | 2, 18 | sylbi 121 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | 
| 20 | 1, 19 | pm2.65i 640 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ≠ wne 2367 ∅c0 3450 〈cop 3625 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |