| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0neqopab | GIF version | ||
| Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
| Ref | Expression |
|---|---|
| 0neqopab | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 2 | elopab 4345 | . . 3 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 3 | nfopab1 4152 | . . . . . 6 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | 3 | nfel2 2385 | . . . . 5 ⊢ Ⅎ𝑥∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | 4 | nfn 1704 | . . . 4 ⊢ Ⅎ𝑥 ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 6 | nfopab2 4153 | . . . . . . 7 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | 6 | nfel2 2385 | . . . . . 6 ⊢ Ⅎ𝑦∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 8 | 7 | nfn 1704 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 9 | vex 2802 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 10 | vex 2802 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | opnzi 4320 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 12 | nesym 2445 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ ↔ ¬ ∅ = 〈𝑥, 𝑦〉) | |
| 13 | pm2.21 620 | . . . . . . . 8 ⊢ (¬ ∅ = 〈𝑥, 𝑦〉 → (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
| 14 | 12, 13 | sylbi 121 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ≠ ∅ → (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) |
| 15 | 11, 14 | ax-mp 5 | . . . . . 6 ⊢ (∅ = 〈𝑥, 𝑦〉 → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 16 | 15 | adantr 276 | . . . . 5 ⊢ ((∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 17 | 8, 16 | exlimi 1640 | . . . 4 ⊢ (∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 18 | 5, 17 | exlimi 1640 | . . 3 ⊢ (∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 19 | 2, 18 | sylbi 121 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 20 | 1, 19 | pm2.65i 642 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 〈cop 3669 {copab 4143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |