![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0neqopab | GIF version |
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
Ref | Expression |
---|---|
0neqopab | ⊢ ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
2 | elopab 4260 | . . 3 ⊢ (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
3 | nfopab1 4074 | . . . . . 6 ⊢ Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
4 | 3 | nfel2 2332 | . . . . 5 ⊢ Ⅎ𝑥∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
5 | 4 | nfn 1658 | . . . 4 ⊢ Ⅎ𝑥 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
6 | nfopab2 4075 | . . . . . . 7 ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
7 | 6 | nfel2 2332 | . . . . . 6 ⊢ Ⅎ𝑦∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
8 | 7 | nfn 1658 | . . . . 5 ⊢ Ⅎ𝑦 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
9 | vex 2742 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
10 | vex 2742 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | opnzi 4237 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ≠ ∅ |
12 | nesym 2392 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ≠ ∅ ↔ ¬ ∅ = ⟨𝑥, 𝑦⟩) | |
13 | pm2.21 617 | . . . . . . . 8 ⊢ (¬ ∅ = ⟨𝑥, 𝑦⟩ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) | |
14 | 12, 13 | sylbi 121 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ≠ ∅ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) |
15 | 11, 14 | ax-mp 5 | . . . . . 6 ⊢ (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
16 | 15 | adantr 276 | . . . . 5 ⊢ ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
17 | 8, 16 | exlimi 1594 | . . . 4 ⊢ (∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
18 | 5, 17 | exlimi 1594 | . . 3 ⊢ (∃𝑥∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
19 | 2, 18 | sylbi 121 | . 2 ⊢ (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
20 | 1, 19 | pm2.65i 639 | 1 ⊢ ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ≠ wne 2347 ∅c0 3424 ⟨cop 3597 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |