ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0neqopab GIF version

Theorem 0neqopab 5898
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0neqopab ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem 0neqopab
StepHypRef Expression
1 id 19 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 4243 . . 3 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 nfopab1 4058 . . . . . 6 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
43nfel2 2325 . . . . 5 𝑥∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfn 1651 . . . 4 𝑥 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 nfopab2 4059 . . . . . . 7 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
76nfel2 2325 . . . . . 6 𝑦∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
87nfn 1651 . . . . 5 𝑦 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
9 vex 2733 . . . . . . . 8 𝑥 ∈ V
10 vex 2733 . . . . . . . 8 𝑦 ∈ V
119, 10opnzi 4220 . . . . . . 7 𝑥, 𝑦⟩ ≠ ∅
12 nesym 2385 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ≠ ∅ ↔ ¬ ∅ = ⟨𝑥, 𝑦⟩)
13 pm2.21 612 . . . . . . . 8 (¬ ∅ = ⟨𝑥, 𝑦⟩ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1412, 13sylbi 120 . . . . . . 7 (⟨𝑥, 𝑦⟩ ≠ ∅ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1511, 14ax-mp 5 . . . . . 6 (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
1615adantr 274 . . . . 5 ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
178, 16exlimi 1587 . . . 4 (∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
185, 17exlimi 1587 . . 3 (∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
192, 18sylbi 120 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
201, 19pm2.65i 634 1 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wne 2340  c0 3414  cop 3586  {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator