ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnfc2 GIF version

Theorem sbnfc2 3109
Description: Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbnfc2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑦 ∈ V
2 csbtt 3061 . . . . 5 ((𝑦 ∈ V ∧ 𝑥𝐴) → 𝑦 / 𝑥𝐴 = 𝐴)
31, 2mpan 422 . . . 4 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝐴)
4 vex 2733 . . . . 5 𝑧 ∈ V
5 csbtt 3061 . . . . 5 ((𝑧 ∈ V ∧ 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝐴)
64, 5mpan 422 . . . 4 (𝑥𝐴𝑧 / 𝑥𝐴 = 𝐴)
73, 6eqtr4d 2206 . . 3 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
87alrimivv 1868 . 2 (𝑥𝐴 → ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
9 nfv 1521 . . 3 𝑤𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
10 eleq2 2234 . . . . . 6 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → (𝑤𝑦 / 𝑥𝐴𝑤𝑧 / 𝑥𝐴))
11 sbsbc 2959 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴[𝑦 / 𝑥]𝑤𝐴)
12 sbcel2g 3070 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴))
131, 12ax-mp 5 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
1411, 13bitri 183 . . . . . 6 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
15 sbsbc 2959 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴[𝑧 / 𝑥]𝑤𝐴)
16 sbcel2g 3070 . . . . . . . 8 (𝑧 ∈ V → ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴))
174, 16ax-mp 5 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1815, 17bitri 183 . . . . . 6 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1910, 14, 183bitr4g 222 . . . . 5 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
20192alimi 1449 . . . 4 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
21 sbnf2 1974 . . . 4 (Ⅎ𝑥 𝑤𝐴 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
2220, 21sylibr 133 . . 3 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → Ⅎ𝑥 𝑤𝐴)
239, 22nfcd 2307 . 2 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑥𝐴)
248, 23impbii 125 1 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1346   = wceq 1348  wnf 1453  [wsb 1755  wcel 2141  wnfc 2299  Vcvv 2730  [wsbc 2955  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  eusvnf  4438
  Copyright terms: Public domain W3C validator