ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfabd GIF version

Theorem nfabd 2392
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd.1 𝑦𝜑
nfabd.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabd (𝜑𝑥{𝑦𝜓})

Proof of Theorem nfabd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . 2 𝑧𝜑
2 df-clab 2216 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
3 nfabd.1 . . . 4 𝑦𝜑
4 nfabd.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfsbd 2028 . . 3 (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
62, 5nfxfrd 1521 . 2 (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦𝜓})
71, 6nfcd 2367 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1506  [wsb 1808  wcel 2200  {cab 2215  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-nfc 2361
This theorem is referenced by:  nfsbcd  3048  nfcsb1d  3155  nfcsbd  3160  nfifd  3630  nfunid  3894  nfiotadw  5277  nfixpxy  6854
  Copyright terms: Public domain W3C validator