ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfabd GIF version

Theorem nfabd 2359
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd.1 𝑦𝜑
nfabd.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabd (𝜑𝑥{𝑦𝜓})

Proof of Theorem nfabd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . 2 𝑧𝜑
2 df-clab 2183 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
3 nfabd.1 . . . 4 𝑦𝜑
4 nfabd.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfsbd 1996 . . 3 (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
62, 5nfxfrd 1489 . 2 (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦𝜓})
71, 6nfcd 2334 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1474  [wsb 1776  wcel 2167  {cab 2182  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-nfc 2328
This theorem is referenced by:  nfsbcd  3009  nfcsb1d  3115  nfcsbd  3120  nfifd  3588  nfunid  3846  nfiotadw  5222  nfixpxy  6776
  Copyright terms: Public domain W3C validator