| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfabd | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfabd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfabd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfabd | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | df-clab 2216 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 3 | nfabd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfabd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfsbd 2028 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 6 | 2, 5 | nfxfrd 1521 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfcd 2367 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1506 [wsb 1808 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-nfc 2361 |
| This theorem is referenced by: nfsbcd 3048 nfcsb1d 3155 nfcsbd 3160 nfifd 3630 nfunid 3894 nfiotadw 5277 nfixpxy 6854 |
| Copyright terms: Public domain | W3C validator |