![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfabd | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfabd.1 | ⊢ Ⅎ𝑦𝜑 |
nfabd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfabd | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1491 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | df-clab 2102 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
3 | nfabd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfabd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfsbd 1926 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
6 | 2, 5 | nfxfrd 1434 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
7 | 1, 6 | nfcd 2250 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1419 ∈ wcel 1463 [wsb 1718 {cab 2101 Ⅎwnfc 2242 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-sb 1719 df-clab 2102 df-nfc 2244 |
This theorem is referenced by: nfsbcd 2897 nfcsb1d 2999 nfcsbd 3002 nfifd 3465 nfunid 3709 nfiotadxy 5049 nfixpxy 6565 |
Copyright terms: Public domain | W3C validator |