ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfabd GIF version

Theorem nfabd 2369
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd.1 𝑦𝜑
nfabd.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabd (𝜑𝑥{𝑦𝜓})

Proof of Theorem nfabd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . 2 𝑧𝜑
2 df-clab 2193 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
3 nfabd.1 . . . 4 𝑦𝜑
4 nfabd.2 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfsbd 2006 . . 3 (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
62, 5nfxfrd 1499 . 2 (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦𝜓})
71, 6nfcd 2344 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1484  [wsb 1786  wcel 2177  {cab 2192  wnfc 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-nfc 2338
This theorem is referenced by:  nfsbcd  3022  nfcsb1d  3128  nfcsbd  3133  nfifd  3602  nfunid  3862  nfiotadw  5243  nfixpxy  6816
  Copyright terms: Public domain W3C validator