| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfabd | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfabd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfabd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfabd | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | df-clab 2183 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 3 | nfabd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfabd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfsbd 1996 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 6 | 2, 5 | nfxfrd 1489 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfcd 2334 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 [wsb 1776 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-nfc 2328 |
| This theorem is referenced by: nfsbcd 3009 nfcsb1d 3115 nfcsbd 3120 nfifd 3588 nfunid 3846 nfiotadw 5222 nfixpxy 6776 |
| Copyright terms: Public domain | W3C validator |