| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfceqi | GIF version | ||
| Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| nfceqi | ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfceqi.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2263 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) | 
| 3 | 2 | nfbii 1487 | . . 3 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵) | 
| 4 | 3 | albii 1484 | . 2 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | 
| 5 | df-nfc 2328 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 6 | df-nfc 2328 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4i 212 | 1 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 | 
| This theorem is referenced by: nfcxfr 2336 nfcxfrd 2337 | 
| Copyright terms: Public domain | W3C validator |