| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfceqi | GIF version | ||
| Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| nfceqi | ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqi.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2271 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
| 3 | 2 | nfbii 1495 | . . 3 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 4 | 3 | albii 1492 | . 2 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 5 | df-nfc 2336 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 6 | df-nfc 2336 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4i 212 | 1 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1370 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-cleq 2197 df-clel 2200 df-nfc 2336 |
| This theorem is referenced by: nfcxfr 2344 nfcxfrd 2345 |
| Copyright terms: Public domain | W3C validator |