![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcri | GIF version |
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2311, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcrii 2312 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
3 | 2 | nfi 1462 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: clelsb1f 2323 nfnfc 2326 nfeq 2327 nfel 2328 cleqf 2344 sbabel 2346 r2alf 2494 r2exf 2495 nfrabxy 2657 cbvralfw 2694 cbvrexfw 2695 cbvralf 2696 cbvrexf 2697 cbvrab 2735 rmo3f 2934 nfccdeq 2960 sbcabel 3044 cbvcsbw 3061 cbvcsb 3062 cbvralcsf 3119 cbvrexcsf 3120 cbvreucsf 3121 cbvrabcsf 3122 dfss2f 3146 nfdif 3256 nfun 3291 nfin 3341 nfop 3794 nfiunxy 3912 nfiinxy 3913 nfiunya 3914 nfiinya 3915 cbviun 3923 cbviin 3924 iunxsngf 3963 cbvdisj 3989 nfdisjv 3991 disjiun 3997 nfmpt 4094 cbvmptf 4096 nffrfor 4347 onintrab2im 4516 tfis 4581 nfxp 4652 opeliunxp 4680 iunxpf 4774 elrnmpt1 4877 fvmptssdm 5599 nfmpo 5941 cbvmpox 5950 fmpox 6198 nffrec 6394 cc3 7264 nfsum1 11357 nfsum 11358 fsum2dlemstep 11435 fisumcom2 11439 nfcprod1 11555 nfcprod 11556 cbvprod 11559 fprod2dlemstep 11623 fprodcom2fi 11627 ctiunctlemudc 12430 ctiunctlemfo 12432 |
Copyright terms: Public domain | W3C validator |