Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcri | GIF version |
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2300, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcrii 2301 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
3 | 2 | nfi 1450 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 ∈ wcel 2136 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: clelsb1f 2312 nfnfc 2315 nfeq 2316 nfel 2317 cleqf 2333 sbabel 2335 r2alf 2483 r2exf 2484 nfrabxy 2646 cbvralfw 2683 cbvrexfw 2684 cbvralf 2685 cbvrexf 2686 cbvrab 2724 rmo3f 2923 nfccdeq 2949 sbcabel 3032 cbvcsbw 3049 cbvcsb 3050 cbvralcsf 3107 cbvrexcsf 3108 cbvreucsf 3109 cbvrabcsf 3110 dfss2f 3133 nfdif 3243 nfun 3278 nfin 3328 nfop 3774 nfiunxy 3892 nfiinxy 3893 nfiunya 3894 nfiinya 3895 cbviun 3903 cbviin 3904 iunxsngf 3943 cbvdisj 3969 nfdisjv 3971 disjiun 3977 nfmpt 4074 cbvmptf 4076 nffrfor 4326 onintrab2im 4495 tfis 4560 nfxp 4631 opeliunxp 4659 iunxpf 4752 elrnmpt1 4855 fvmptssdm 5570 nfmpo 5911 cbvmpox 5920 fmpox 6168 nffrec 6364 cc3 7209 nfsum1 11297 nfsum 11298 fsum2dlemstep 11375 fisumcom2 11379 nfcprod1 11495 nfcprod 11496 cbvprod 11499 fprod2dlemstep 11563 fprodcom2fi 11567 ctiunctlemudc 12370 ctiunctlemfo 12372 |
Copyright terms: Public domain | W3C validator |