ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcri GIF version

Theorem nfcri 2366
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2364, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1 𝑥𝐴
Assertion
Ref Expression
nfcri 𝑥 𝑦𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcri
StepHypRef Expression
1 nfcri.1 . . 3 𝑥𝐴
21nfcrii 2365 . 2 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
32nfi 1508 1 𝑥 𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1506  wcel 2200  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  clelsb1f  2376  nfnfc  2379  nfeq  2380  nfel  2381  cleqf  2397  sbabel  2399  r2alf  2547  r2exf  2548  nfrabw  2712  cbvralfw  2754  cbvrexfw  2755  cbvralf  2756  cbvrexf  2757  cbvrab  2797  rmo3f  3000  nfccdeq  3026  sbcabel  3111  cbvcsbw  3128  cbvcsb  3129  cbvralcsf  3187  cbvrexcsf  3188  cbvreucsf  3189  cbvrabcsf  3190  dfss2f  3215  nfdif  3325  nfun  3360  nfin  3410  nfop  3872  nfiunxy  3990  nfiinxy  3991  nfiunya  3992  nfiinya  3993  cbviun  4001  cbviin  4002  iunxsngf  4042  cbvdisj  4068  nfdisjv  4070  disjiun  4077  nfmpt  4175  cbvmptf  4177  nffrfor  4436  onintrab2im  4607  tfis  4672  nfxp  4743  opeliunxp  4771  iunxpf  4867  elrnmpt1  4971  fvmptssdm  5712  nfmpo  6064  cbvmpox  6073  fmpox  6336  nffrec  6532  cc3  7442  nfsum1  11853  nfsum  11854  fsum2dlemstep  11931  fisumcom2  11935  nfcprod1  12051  nfcprod  12052  cbvprod  12055  fprod2dlemstep  12119  fprodcom2fi  12123  ctiunctlemudc  12994  ctiunctlemfo  12996
  Copyright terms: Public domain W3C validator