ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcri GIF version

Theorem nfcri 2330
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2328, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1 𝑥𝐴
Assertion
Ref Expression
nfcri 𝑥 𝑦𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcri
StepHypRef Expression
1 nfcri.1 . . 3 𝑥𝐴
21nfcrii 2329 . 2 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
32nfi 1473 1 𝑥 𝑦𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1471  wcel 2164  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  clelsb1f  2340  nfnfc  2343  nfeq  2344  nfel  2345  cleqf  2361  sbabel  2363  r2alf  2511  r2exf  2512  nfrabw  2675  cbvralfw  2716  cbvrexfw  2717  cbvralf  2718  cbvrexf  2719  cbvrab  2758  rmo3f  2957  nfccdeq  2983  sbcabel  3067  cbvcsbw  3084  cbvcsb  3085  cbvralcsf  3143  cbvrexcsf  3144  cbvreucsf  3145  cbvrabcsf  3146  dfss2f  3170  nfdif  3280  nfun  3315  nfin  3365  nfop  3820  nfiunxy  3938  nfiinxy  3939  nfiunya  3940  nfiinya  3941  cbviun  3949  cbviin  3950  iunxsngf  3990  cbvdisj  4016  nfdisjv  4018  disjiun  4024  nfmpt  4121  cbvmptf  4123  nffrfor  4379  onintrab2im  4550  tfis  4615  nfxp  4686  opeliunxp  4714  iunxpf  4810  elrnmpt1  4913  fvmptssdm  5642  nfmpo  5987  cbvmpox  5996  fmpox  6253  nffrec  6449  cc3  7328  nfsum1  11499  nfsum  11500  fsum2dlemstep  11577  fisumcom2  11581  nfcprod1  11697  nfcprod  11698  cbvprod  11701  fprod2dlemstep  11765  fprodcom2fi  11769  ctiunctlemudc  12594  ctiunctlemfo  12596
  Copyright terms: Public domain W3C validator