![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcri | GIF version |
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2328, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcrii 2329 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
3 | 2 | nfi 1473 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: clelsb1f 2340 nfnfc 2343 nfeq 2344 nfel 2345 cleqf 2361 sbabel 2363 r2alf 2511 r2exf 2512 nfrabw 2675 cbvralfw 2716 cbvrexfw 2717 cbvralf 2718 cbvrexf 2719 cbvrab 2758 rmo3f 2957 nfccdeq 2983 sbcabel 3067 cbvcsbw 3084 cbvcsb 3085 cbvralcsf 3143 cbvrexcsf 3144 cbvreucsf 3145 cbvrabcsf 3146 dfss2f 3170 nfdif 3280 nfun 3315 nfin 3365 nfop 3820 nfiunxy 3938 nfiinxy 3939 nfiunya 3940 nfiinya 3941 cbviun 3949 cbviin 3950 iunxsngf 3990 cbvdisj 4016 nfdisjv 4018 disjiun 4024 nfmpt 4121 cbvmptf 4123 nffrfor 4379 onintrab2im 4550 tfis 4615 nfxp 4686 opeliunxp 4714 iunxpf 4810 elrnmpt1 4913 fvmptssdm 5642 nfmpo 5987 cbvmpox 5996 fmpox 6253 nffrec 6449 cc3 7328 nfsum1 11499 nfsum 11500 fsum2dlemstep 11577 fisumcom2 11581 nfcprod1 11697 nfcprod 11698 cbvprod 11701 fprod2dlemstep 11765 fprodcom2fi 11769 ctiunctlemudc 12594 ctiunctlemfo 12596 |
Copyright terms: Public domain | W3C validator |