Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcri | GIF version |
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2288, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcrii 2289 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
3 | 2 | nfi 1439 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1437 ∈ wcel 2125 Ⅎwnfc 2283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-cleq 2147 df-clel 2150 df-nfc 2285 |
This theorem is referenced by: clelsb3f 2300 nfnfc 2303 nfeq 2304 nfel 2305 cleqf 2321 sbabel 2323 r2alf 2471 r2exf 2472 nfrabxy 2634 cbvralf 2671 cbvrexf 2672 cbvrab 2707 rmo3f 2905 nfccdeq 2931 sbcabel 3014 cbvcsbw 3031 cbvcsb 3032 cbvralcsf 3089 cbvrexcsf 3090 cbvreucsf 3091 cbvrabcsf 3092 dfss2f 3115 nfdif 3224 nfun 3259 nfin 3309 nfop 3753 nfiunxy 3871 nfiinxy 3872 nfiunya 3873 nfiinya 3874 cbviun 3882 cbviin 3883 iunxsngf 3922 cbvdisj 3948 nfdisjv 3950 disjiun 3956 nfmpt 4052 cbvmptf 4054 nffrfor 4303 onintrab2im 4471 tfis 4536 nfxp 4606 opeliunxp 4634 iunxpf 4727 elrnmpt1 4830 fvmptssdm 5545 nfmpo 5880 cbvmpox 5889 fmpox 6138 nffrec 6333 cc3 7167 nfsum1 11230 nfsum 11231 fsum2dlemstep 11308 fisumcom2 11312 nfcprod1 11428 nfcprod 11429 cbvprod 11432 fprod2dlemstep 11496 fprodcom2fi 11500 ctiunctlemudc 12125 ctiunctlemfo 12127 |
Copyright terms: Public domain | W3C validator |