![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcri | GIF version |
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2328, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcrii 2329 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
3 | 2 | nfi 1473 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: clelsb1f 2340 nfnfc 2343 nfeq 2344 nfel 2345 cleqf 2361 sbabel 2363 r2alf 2511 r2exf 2512 nfrabw 2675 cbvralfw 2716 cbvrexfw 2717 cbvralf 2718 cbvrexf 2719 cbvrab 2758 rmo3f 2958 nfccdeq 2984 sbcabel 3068 cbvcsbw 3085 cbvcsb 3086 cbvralcsf 3144 cbvrexcsf 3145 cbvreucsf 3146 cbvrabcsf 3147 dfss2f 3171 nfdif 3281 nfun 3316 nfin 3366 nfop 3821 nfiunxy 3939 nfiinxy 3940 nfiunya 3941 nfiinya 3942 cbviun 3950 cbviin 3951 iunxsngf 3991 cbvdisj 4017 nfdisjv 4019 disjiun 4025 nfmpt 4122 cbvmptf 4124 nffrfor 4380 onintrab2im 4551 tfis 4616 nfxp 4687 opeliunxp 4715 iunxpf 4811 elrnmpt1 4914 fvmptssdm 5643 nfmpo 5988 cbvmpox 5997 fmpox 6255 nffrec 6451 cc3 7330 nfsum1 11502 nfsum 11503 fsum2dlemstep 11580 fisumcom2 11584 nfcprod1 11700 nfcprod 11701 cbvprod 11704 fprod2dlemstep 11768 fprodcom2fi 11772 ctiunctlemudc 12597 ctiunctlemfo 12599 |
Copyright terms: Public domain | W3C validator |