| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcri | GIF version | ||
| Description: Consequence of the not-free predicate. (Note that unlike nfcr 2364, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcrii 2365 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| 3 | 2 | nfi 1508 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: clelsb1f 2376 nfnfc 2379 nfeq 2380 nfel 2381 cleqf 2397 sbabel 2399 r2alf 2547 r2exf 2548 nfrabw 2712 cbvralfw 2754 cbvrexfw 2755 cbvralf 2756 cbvrexf 2757 cbvrab 2797 rmo3f 3000 nfccdeq 3026 sbcabel 3111 cbvcsbw 3128 cbvcsb 3129 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 dfss2f 3215 nfdif 3325 nfun 3360 nfin 3410 nfop 3872 nfiunxy 3990 nfiinxy 3991 nfiunya 3992 nfiinya 3993 cbviun 4001 cbviin 4002 iunxsngf 4042 cbvdisj 4068 nfdisjv 4070 disjiun 4077 nfmpt 4175 cbvmptf 4177 nffrfor 4436 onintrab2im 4607 tfis 4672 nfxp 4743 opeliunxp 4771 iunxpf 4867 elrnmpt1 4971 fvmptssdm 5712 nfmpo 6064 cbvmpox 6073 fmpox 6336 nffrec 6532 cc3 7442 nfsum1 11853 nfsum 11854 fsum2dlemstep 11931 fisumcom2 11935 nfcprod1 12051 nfcprod 12052 cbvprod 12055 fprod2dlemstep 12119 fprodcom2fi 12123 ctiunctlemudc 12994 ctiunctlemfo 12996 |
| Copyright terms: Public domain | W3C validator |