| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcri | GIF version | ||
| Description: Consequence of the not-free predicate. (Note that unlike nfcr 2341, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcri | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcrii 2342 | . 2 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| 3 | 2 | nfi 1486 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: clelsb1f 2353 nfnfc 2356 nfeq 2357 nfel 2358 cleqf 2374 sbabel 2376 r2alf 2524 r2exf 2525 nfrabw 2688 cbvralfw 2729 cbvrexfw 2730 cbvralf 2731 cbvrexf 2732 cbvrab 2771 rmo3f 2972 nfccdeq 2998 sbcabel 3082 cbvcsbw 3099 cbvcsb 3100 cbvralcsf 3158 cbvrexcsf 3159 cbvreucsf 3160 cbvrabcsf 3161 dfss2f 3186 nfdif 3296 nfun 3331 nfin 3381 nfop 3838 nfiunxy 3956 nfiinxy 3957 nfiunya 3958 nfiinya 3959 cbviun 3967 cbviin 3968 iunxsngf 4008 cbvdisj 4034 nfdisjv 4036 disjiun 4043 nfmpt 4141 cbvmptf 4143 nffrfor 4400 onintrab2im 4571 tfis 4636 nfxp 4707 opeliunxp 4735 iunxpf 4831 elrnmpt1 4935 fvmptssdm 5674 nfmpo 6024 cbvmpox 6033 fmpox 6296 nffrec 6492 cc3 7393 nfsum1 11717 nfsum 11718 fsum2dlemstep 11795 fisumcom2 11799 nfcprod1 11915 nfcprod 11916 cbvprod 11919 fprod2dlemstep 11983 fprodcom2fi 11987 ctiunctlemudc 12858 ctiunctlemfo 12860 |
| Copyright terms: Public domain | W3C validator |