![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb8 | GIF version |
Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) |
Ref | Expression |
---|---|
sb8e.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8e.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfs1 1823 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
3 | sbequ12 1785 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbval 1768 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
This theorem is referenced by: sbnf2 2000 sb8eu 2058 nfraldya 2532 rabeq0 3480 abeq0 3481 sb8iota 5226 |
Copyright terms: Public domain | W3C validator |