ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8 GIF version

Theorem sb8 1828
Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb8e.1 𝑦𝜑
Assertion
Ref Expression
sb8 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8
StepHypRef Expression
1 sb8e.1 . 2 𝑦𝜑
21nfs1 1781 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 1744 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbval 1727 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1329  wnf 1436  [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736
This theorem is referenced by:  sbnf2  1956  sb8eu  2012  nfraldya  2469  rabeq0  3392  abeq0  3393  sb8iota  5095
  Copyright terms: Public domain W3C validator