Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb8 | GIF version |
Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) |
Ref | Expression |
---|---|
sb8e.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8e.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfs1 1797 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
3 | sbequ12 1759 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbval 1742 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: sbnf2 1969 sb8eu 2027 nfraldya 2501 rabeq0 3438 abeq0 3439 sb8iota 5160 |
Copyright terms: Public domain | W3C validator |