Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzo0dvdseq | GIF version |
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
fzo0dvdseq | ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzolt2 10091 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴) | |
2 | elfzoelz 10082 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ) | |
3 | elfzoel2 10081 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ) | |
4 | zltnle 9237 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 409 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpbid 146 | . . . . . 6 ⊢ (𝐵 ∈ (0..^𝐴) → ¬ 𝐴 ≤ 𝐵) |
7 | 6 | adantr 274 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐴 ≤ 𝐵) |
8 | 3 | adantr 274 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ) |
9 | elfzonn0 10121 | . . . . . . . . . 10 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0) | |
10 | 9 | adantr 274 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0) |
11 | simpr 109 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
12 | eldifsn 3703 | . . . . . . . . 9 ⊢ (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0)) | |
13 | 10, 11, 12 | sylanbrc 414 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0})) |
14 | dfn2 9127 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
15 | 13, 14 | eleqtrrdi 2260 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ) |
16 | dvdsle 11782 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) | |
17 | 8, 15, 16 | syl2anc 409 | . . . . . 6 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) |
18 | 17 | impancom 258 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (𝐵 ≠ 0 → 𝐴 ≤ 𝐵)) |
19 | 7, 18 | mtod 653 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐵 ≠ 0) |
20 | 0z 9202 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
21 | zdceq 9266 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0) | |
22 | 20, 21 | mpan2 422 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → DECID 𝐵 = 0) |
23 | nnedc 2341 | . . . . . . 7 ⊢ (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) | |
24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
25 | 2, 24 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
26 | 25 | adantr 274 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
27 | 19, 26 | mpbid 146 | . . 3 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → 𝐵 = 0) |
28 | 27 | ex 114 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 → 𝐵 = 0)) |
29 | dvds0 11746 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 0) | |
30 | 3, 29 | syl 14 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0) |
31 | breq2 3986 | . . 3 ⊢ (𝐵 = 0 → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0)) | |
32 | 30, 31 | syl5ibrcom 156 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴 ∥ 𝐵)) |
33 | 28, 32 | impbid 128 | 1 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∖ cdif 3113 {csn 3576 class class class wbr 3982 (class class class)co 5842 0cc0 7753 < clt 7933 ≤ cle 7934 ℕcn 8857 ℕ0cn0 9114 ℤcz 9191 ..^cfzo 10077 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-fz 9945 df-fzo 10078 df-dvds 11728 |
This theorem is referenced by: fzocongeq 11796 |
Copyright terms: Public domain | W3C validator |