Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzo0dvdseq | GIF version |
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
fzo0dvdseq | ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzolt2 10099 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴) | |
2 | elfzoelz 10090 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ) | |
3 | elfzoel2 10089 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ) | |
4 | zltnle 9245 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 409 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpbid 146 | . . . . . 6 ⊢ (𝐵 ∈ (0..^𝐴) → ¬ 𝐴 ≤ 𝐵) |
7 | 6 | adantr 274 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐴 ≤ 𝐵) |
8 | 3 | adantr 274 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ) |
9 | elfzonn0 10129 | . . . . . . . . . 10 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0) | |
10 | 9 | adantr 274 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0) |
11 | simpr 109 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
12 | eldifsn 3708 | . . . . . . . . 9 ⊢ (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0)) | |
13 | 10, 11, 12 | sylanbrc 415 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0})) |
14 | dfn2 9135 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
15 | 13, 14 | eleqtrrdi 2264 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ) |
16 | dvdsle 11791 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) | |
17 | 8, 15, 16 | syl2anc 409 | . . . . . 6 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) |
18 | 17 | impancom 258 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (𝐵 ≠ 0 → 𝐴 ≤ 𝐵)) |
19 | 7, 18 | mtod 658 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐵 ≠ 0) |
20 | 0z 9210 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
21 | zdceq 9274 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0) | |
22 | 20, 21 | mpan2 423 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → DECID 𝐵 = 0) |
23 | nnedc 2345 | . . . . . . 7 ⊢ (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) | |
24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
25 | 2, 24 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
26 | 25 | adantr 274 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
27 | 19, 26 | mpbid 146 | . . 3 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → 𝐵 = 0) |
28 | 27 | ex 114 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 → 𝐵 = 0)) |
29 | dvds0 11755 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 0) | |
30 | 3, 29 | syl 14 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0) |
31 | breq2 3991 | . . 3 ⊢ (𝐵 = 0 → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0)) | |
32 | 30, 31 | syl5ibrcom 156 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴 ∥ 𝐵)) |
33 | 28, 32 | impbid 128 | 1 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∖ cdif 3118 {csn 3581 class class class wbr 3987 (class class class)co 5850 0cc0 7761 < clt 7941 ≤ cle 7942 ℕcn 8865 ℕ0cn0 9122 ℤcz 9199 ..^cfzo 10085 ∥ cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-fz 9953 df-fzo 10086 df-dvds 11737 |
This theorem is referenced by: fzocongeq 11805 |
Copyright terms: Public domain | W3C validator |