| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0dvdseq | GIF version | ||
| Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzo0dvdseq | ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzolt2 10261 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴) | |
| 2 | elfzoelz 10251 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ) | |
| 3 | elfzoel2 10250 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ) | |
| 4 | zltnle 9400 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpbid 147 | . . . . . 6 ⊢ (𝐵 ∈ (0..^𝐴) → ¬ 𝐴 ≤ 𝐵) |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐴 ≤ 𝐵) |
| 8 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ) |
| 9 | elfzonn0 10291 | . . . . . . . . . 10 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0) | |
| 10 | 9 | adantr 276 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0) |
| 11 | simpr 110 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
| 12 | eldifsn 3759 | . . . . . . . . 9 ⊢ (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0)) | |
| 13 | 10, 11, 12 | sylanbrc 417 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0})) |
| 14 | dfn2 9290 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 15 | 13, 14 | eleqtrrdi 2298 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ) |
| 16 | dvdsle 12074 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) | |
| 17 | 8, 15, 16 | syl2anc 411 | . . . . . 6 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) |
| 18 | 17 | impancom 260 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (𝐵 ≠ 0 → 𝐴 ≤ 𝐵)) |
| 19 | 7, 18 | mtod 664 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐵 ≠ 0) |
| 20 | 0z 9365 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 21 | zdceq 9430 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0) | |
| 22 | 20, 21 | mpan2 425 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → DECID 𝐵 = 0) |
| 23 | nnedc 2380 | . . . . . . 7 ⊢ (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) | |
| 24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 25 | 2, 24 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 26 | 25 | adantr 276 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 27 | 19, 26 | mpbid 147 | . . 3 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → 𝐵 = 0) |
| 28 | 27 | ex 115 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 → 𝐵 = 0)) |
| 29 | dvds0 12036 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 0) | |
| 30 | 3, 29 | syl 14 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0) |
| 31 | breq2 4047 | . . 3 ⊢ (𝐵 = 0 → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0)) | |
| 32 | 30, 31 | syl5ibrcom 157 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴 ∥ 𝐵)) |
| 33 | 28, 32 | impbid 129 | 1 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ∖ cdif 3162 {csn 3632 class class class wbr 4043 (class class class)co 5934 0cc0 7907 < clt 8089 ≤ cle 8090 ℕcn 9018 ℕ0cn0 9277 ℤcz 9354 ..^cfzo 10246 ∥ cdvds 12017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-fz 10113 df-fzo 10247 df-dvds 12018 |
| This theorem is referenced by: fzocongeq 12088 |
| Copyright terms: Public domain | W3C validator |