ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo0dvdseq GIF version

Theorem fzo0dvdseq 12039
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzo0dvdseq (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))

Proof of Theorem fzo0dvdseq
StepHypRef Expression
1 elfzolt2 10249 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴)
2 elfzoelz 10239 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ)
3 elfzoel2 10238 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ)
4 zltnle 9389 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
52, 3, 4syl2anc 411 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
61, 5mpbid 147 . . . . . 6 (𝐵 ∈ (0..^𝐴) → ¬ 𝐴𝐵)
76adantr 276 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
83adantr 276 . . . . . . 7 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ)
9 elfzonn0 10279 . . . . . . . . . 10 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0)
109adantr 276 . . . . . . . . 9 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0)
11 simpr 110 . . . . . . . . 9 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
12 eldifsn 3750 . . . . . . . . 9 (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
1310, 11, 12sylanbrc 417 . . . . . . . 8 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0}))
14 dfn2 9279 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
1513, 14eleqtrrdi 2290 . . . . . . 7 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ)
16 dvdsle 12026 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴𝐵))
178, 15, 16syl2anc 411 . . . . . 6 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴𝐵𝐴𝐵))
1817impancom 260 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → (𝐵 ≠ 0 → 𝐴𝐵))
197, 18mtod 664 . . . 4 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → ¬ 𝐵 ≠ 0)
20 0z 9354 . . . . . . . 8 0 ∈ ℤ
21 zdceq 9418 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
2220, 21mpan2 425 . . . . . . 7 (𝐵 ∈ ℤ → DECID 𝐵 = 0)
23 nnedc 2372 . . . . . . 7 (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
2422, 23syl 14 . . . . . 6 (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
252, 24syl 14 . . . . 5 (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
2625adantr 276 . . . 4 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
2719, 26mpbid 147 . . 3 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → 𝐵 = 0)
2827ex 115 . 2 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
29 dvds0 11988 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∥ 0)
303, 29syl 14 . . 3 (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0)
31 breq2 4038 . . 3 (𝐵 = 0 → (𝐴𝐵𝐴 ∥ 0))
3230, 31syl5ibrcom 157 . 2 (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴𝐵))
3328, 32impbid 129 1 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  cdif 3154  {csn 3623   class class class wbr 4034  (class class class)co 5925  0cc0 7896   < clt 8078  cle 8079  cn 9007  0cn0 9266  cz 9343  ..^cfzo 10234  cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-fz 10101  df-fzo 10235  df-dvds 11970
This theorem is referenced by:  fzocongeq  12040
  Copyright terms: Public domain W3C validator