| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0dvdseq | GIF version | ||
| Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzo0dvdseq | ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzolt2 10249 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴) | |
| 2 | elfzoelz 10239 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ) | |
| 3 | elfzoel2 10238 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ) | |
| 4 | zltnle 9389 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpbid 147 | . . . . . 6 ⊢ (𝐵 ∈ (0..^𝐴) → ¬ 𝐴 ≤ 𝐵) |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐴 ≤ 𝐵) |
| 8 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ) |
| 9 | elfzonn0 10279 | . . . . . . . . . 10 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0) | |
| 10 | 9 | adantr 276 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0) |
| 11 | simpr 110 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
| 12 | eldifsn 3750 | . . . . . . . . 9 ⊢ (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0)) | |
| 13 | 10, 11, 12 | sylanbrc 417 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0})) |
| 14 | dfn2 9279 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 15 | 13, 14 | eleqtrrdi 2290 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ) |
| 16 | dvdsle 12026 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) | |
| 17 | 8, 15, 16 | syl2anc 411 | . . . . . 6 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) |
| 18 | 17 | impancom 260 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (𝐵 ≠ 0 → 𝐴 ≤ 𝐵)) |
| 19 | 7, 18 | mtod 664 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐵 ≠ 0) |
| 20 | 0z 9354 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 21 | zdceq 9418 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0) | |
| 22 | 20, 21 | mpan2 425 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → DECID 𝐵 = 0) |
| 23 | nnedc 2372 | . . . . . . 7 ⊢ (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) | |
| 24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 25 | 2, 24 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 26 | 25 | adantr 276 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 27 | 19, 26 | mpbid 147 | . . 3 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → 𝐵 = 0) |
| 28 | 27 | ex 115 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 → 𝐵 = 0)) |
| 29 | dvds0 11988 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 0) | |
| 30 | 3, 29 | syl 14 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0) |
| 31 | breq2 4038 | . . 3 ⊢ (𝐵 = 0 → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0)) | |
| 32 | 30, 31 | syl5ibrcom 157 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴 ∥ 𝐵)) |
| 33 | 28, 32 | impbid 129 | 1 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 {csn 3623 class class class wbr 4034 (class class class)co 5925 0cc0 7896 < clt 8078 ≤ cle 8079 ℕcn 9007 ℕ0cn0 9266 ℤcz 9343 ..^cfzo 10234 ∥ cdvds 11969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-fz 10101 df-fzo 10235 df-dvds 11970 |
| This theorem is referenced by: fzocongeq 12040 |
| Copyright terms: Public domain | W3C validator |