| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0dvdseq | GIF version | ||
| Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzo0dvdseq | ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzolt2 10349 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴) | |
| 2 | elfzoelz 10339 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ) | |
| 3 | elfzoel2 10338 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ) | |
| 4 | zltnle 9488 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpbid 147 | . . . . . 6 ⊢ (𝐵 ∈ (0..^𝐴) → ¬ 𝐴 ≤ 𝐵) |
| 7 | 6 | adantr 276 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐴 ≤ 𝐵) |
| 8 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ) |
| 9 | elfzonn0 10382 | . . . . . . . . . 10 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0) | |
| 10 | 9 | adantr 276 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0) |
| 11 | simpr 110 | . . . . . . . . 9 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
| 12 | eldifsn 3794 | . . . . . . . . 9 ⊢ (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0)) | |
| 13 | 10, 11, 12 | sylanbrc 417 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0})) |
| 14 | dfn2 9378 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 15 | 13, 14 | eleqtrrdi 2323 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ) |
| 16 | dvdsle 12350 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) | |
| 17 | 8, 15, 16 | syl2anc 411 | . . . . . 6 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) |
| 18 | 17 | impancom 260 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (𝐵 ≠ 0 → 𝐴 ≤ 𝐵)) |
| 19 | 7, 18 | mtod 667 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → ¬ 𝐵 ≠ 0) |
| 20 | 0z 9453 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 21 | zdceq 9518 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0) | |
| 22 | 20, 21 | mpan2 425 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → DECID 𝐵 = 0) |
| 23 | nnedc 2405 | . . . . . . 7 ⊢ (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) | |
| 24 | 22, 23 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 25 | 2, 24 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 26 | 25 | adantr 276 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0)) |
| 27 | 19, 26 | mpbid 147 | . . 3 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐴 ∥ 𝐵) → 𝐵 = 0) |
| 28 | 27 | ex 115 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 → 𝐵 = 0)) |
| 29 | dvds0 12312 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 0) | |
| 30 | 3, 29 | syl 14 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0) |
| 31 | breq2 4086 | . . 3 ⊢ (𝐵 = 0 → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0)) | |
| 32 | 30, 31 | syl5ibrcom 157 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴 ∥ 𝐵)) |
| 33 | 28, 32 | impbid 129 | 1 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 class class class wbr 4082 (class class class)co 6000 0cc0 7995 < clt 8177 ≤ cle 8178 ℕcn 9106 ℕ0cn0 9365 ℤcz 9442 ..^cfzo 10334 ∥ cdvds 12293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-fz 10201 df-fzo 10335 df-dvds 12294 |
| This theorem is referenced by: fzocongeq 12364 |
| Copyright terms: Public domain | W3C validator |