ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo0dvdseq GIF version

Theorem fzo0dvdseq 11804
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzo0dvdseq (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))

Proof of Theorem fzo0dvdseq
StepHypRef Expression
1 elfzolt2 10099 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴)
2 elfzoelz 10090 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ)
3 elfzoel2 10089 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ)
4 zltnle 9245 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
52, 3, 4syl2anc 409 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
61, 5mpbid 146 . . . . . 6 (𝐵 ∈ (0..^𝐴) → ¬ 𝐴𝐵)
76adantr 274 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
83adantr 274 . . . . . . 7 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℤ)
9 elfzonn0 10129 . . . . . . . . . 10 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0)
109adantr 274 . . . . . . . . 9 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0)
11 simpr 109 . . . . . . . . 9 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
12 eldifsn 3708 . . . . . . . . 9 (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
1310, 11, 12sylanbrc 415 . . . . . . . 8 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0}))
14 dfn2 9135 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
1513, 14eleqtrrdi 2264 . . . . . . 7 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ)
16 dvdsle 11791 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴𝐵))
178, 15, 16syl2anc 409 . . . . . 6 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴𝐵𝐴𝐵))
1817impancom 258 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → (𝐵 ≠ 0 → 𝐴𝐵))
197, 18mtod 658 . . . 4 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → ¬ 𝐵 ≠ 0)
20 0z 9210 . . . . . . . 8 0 ∈ ℤ
21 zdceq 9274 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐵 = 0)
2220, 21mpan2 423 . . . . . . 7 (𝐵 ∈ ℤ → DECID 𝐵 = 0)
23 nnedc 2345 . . . . . . 7 (DECID 𝐵 = 0 → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
2422, 23syl 14 . . . . . 6 (𝐵 ∈ ℤ → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
252, 24syl 14 . . . . 5 (𝐵 ∈ (0..^𝐴) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
2625adantr 274 . . . 4 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → (¬ 𝐵 ≠ 0 ↔ 𝐵 = 0))
2719, 26mpbid 146 . . 3 ((𝐵 ∈ (0..^𝐴) ∧ 𝐴𝐵) → 𝐵 = 0)
2827ex 114 . 2 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
29 dvds0 11755 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∥ 0)
303, 29syl 14 . . 3 (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0)
31 breq2 3991 . . 3 (𝐵 = 0 → (𝐴𝐵𝐴 ∥ 0))
3230, 31syl5ibrcom 156 . 2 (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴𝐵))
3328, 32impbid 128 1 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  cdif 3118  {csn 3581   class class class wbr 3987  (class class class)co 5850  0cc0 7761   < clt 7941  cle 7942  cn 8865  0cn0 9122  cz 9199  ..^cfzo 10085  cdvds 11736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-fz 9953  df-fzo 10086  df-dvds 11737
This theorem is referenced by:  fzocongeq  11805
  Copyright terms: Public domain W3C validator