![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbiran | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ 𝜓 |
mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
3 | 2 | biantrur 303 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbir2an 944 unssdif 3394 unssin 3398 inssun 3399 invdif 3401 pwpwab 4000 exmidexmid 4225 opabm 4311 regexmidlem1 4565 elirr 4573 en2lp 4586 wessep 4610 peano5 4630 relop 4812 ssrnres 5108 funopab 5289 funcnv2 5314 funcnveq 5317 fnres 5370 idref 5799 rnoprab 6001 elixp 6759 djuf1olem 7112 lbfzo0 10248 expghmap 14095 txdis1cn 14446 |
Copyright terms: Public domain | W3C validator |