Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbiran | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ 𝜓 |
mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
3 | 2 | biantrur 301 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbir2an 932 unssdif 3357 unssin 3361 inssun 3362 invdif 3364 pwpwab 3953 exmidexmid 4175 opabm 4258 regexmidlem1 4510 elirr 4518 en2lp 4531 wessep 4555 peano5 4575 relop 4754 ssrnres 5046 funopab 5223 funcnv2 5248 funcnveq 5251 fnres 5304 idref 5725 rnoprab 5925 elixp 6671 djuf1olem 7018 lbfzo0 10116 txdis1cn 12918 |
Copyright terms: Public domain | W3C validator |