Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano4 GIF version

Theorem bj-peano4 15447
Description: Remove from peano4 4629 dependency on ax-setind 4569. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem bj-peano4
StepHypRef Expression
1 3simpa 996 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
2 pm3.22 265 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
3 bj-nnen2lp 15446 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ¬ (𝐵𝐴𝐴𝐵))
41, 2, 33syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ¬ (𝐵𝐴𝐴𝐵))
5 sucidg 4447 . . . . . . . . . . . 12 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
6 eleq2 2257 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
75, 6syl5ibrcom 157 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
8 elsucg 4435 . . . . . . . . . . 11 (𝐵 ∈ ω → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
97, 8sylibd 149 . . . . . . . . . 10 (𝐵 ∈ ω → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
109imp 124 . . . . . . . . 9 ((𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
11103adant1 1017 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
12 sucidg 4447 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
13 eleq2 2257 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
1412, 13syl5ibcom 155 . . . . . . . . . . 11 (𝐴 ∈ ω → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
15 elsucg 4435 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
1614, 15sylibd 149 . . . . . . . . . 10 (𝐴 ∈ ω → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
1716imp 124 . . . . . . . . 9 ((𝐴 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
18173adant2 1018 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
1911, 18jca 306 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)))
20 eqcom 2195 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
2120orbi2i 763 . . . . . . . 8 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2221anbi1i 458 . . . . . . 7 (((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2319, 22sylib 122 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
24 ordir 818 . . . . . 6 (((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2523, 24sylibr 134 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵))
2625ord 725 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵𝐴𝐴𝐵) → 𝐴 = 𝐵))
274, 26mpd 13 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵)
28273expia 1207 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
29 suceq 4433 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
3028, 29impbid1 142 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  suc csuc 4396  ωcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdn 15309  ax-bdal 15310  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-infvn 15433
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator