Proof of Theorem bj-peano4
Step | Hyp | Ref
| Expression |
1 | | 3simpa 984 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) |
2 | | pm3.22 263 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈
ω)) |
3 | | bj-nnen2lp 13836 |
. . . . 5
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ¬
(𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵)) |
4 | 1, 2, 3 | 3syl 17 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵)) |
5 | | sucidg 4394 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵) |
6 | | eleq2 2230 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐵)) |
7 | 5, 6 | syl5ibrcom 156 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ω → (suc
𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴)) |
8 | | elsucg 4382 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ω → (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
9 | 7, 8 | sylibd 148 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → (suc
𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
10 | 9 | imp 123 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
11 | 10 | 3adant1 1005 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
12 | | sucidg 4394 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
13 | | eleq2 2230 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ suc 𝐵)) |
14 | 12, 13 | syl5ibcom 154 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → (suc
𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵)) |
15 | | elsucg 4382 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
16 | 14, 15 | sylibd 148 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → (suc
𝐴 = suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
17 | 16 | imp 123 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
18 | 17 | 3adant2 1006 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
19 | 11, 18 | jca 304 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
20 | | eqcom 2167 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
21 | 20 | orbi2i 752 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
22 | 21 | anbi1i 454 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) ↔ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
23 | 19, 22 | sylib 121 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
24 | | ordir 807 |
. . . . . 6
⊢ (((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
25 | 23, 24 | sylibr 133 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) ∨ 𝐴 = 𝐵)) |
26 | 25 | ord 714 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 𝐵)) |
27 | 4, 26 | mpd 13 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵) |
28 | 27 | 3expia 1195 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 = suc 𝐵 → 𝐴 = 𝐵)) |
29 | | suceq 4380 |
. 2
⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
30 | 28, 29 | impbid1 141 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) |