Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano4 GIF version

Theorem bj-peano4 13990
Description: Remove from peano4 4581 dependency on ax-setind 4521. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem bj-peano4
StepHypRef Expression
1 3simpa 989 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
2 pm3.22 263 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
3 bj-nnen2lp 13989 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ¬ (𝐵𝐴𝐴𝐵))
41, 2, 33syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ¬ (𝐵𝐴𝐴𝐵))
5 sucidg 4401 . . . . . . . . . . . 12 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
6 eleq2 2234 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
75, 6syl5ibrcom 156 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
8 elsucg 4389 . . . . . . . . . . 11 (𝐵 ∈ ω → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
97, 8sylibd 148 . . . . . . . . . 10 (𝐵 ∈ ω → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
109imp 123 . . . . . . . . 9 ((𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
11103adant1 1010 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
12 sucidg 4401 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
13 eleq2 2234 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
1412, 13syl5ibcom 154 . . . . . . . . . . 11 (𝐴 ∈ ω → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
15 elsucg 4389 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
1614, 15sylibd 148 . . . . . . . . . 10 (𝐴 ∈ ω → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
1716imp 123 . . . . . . . . 9 ((𝐴 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
18173adant2 1011 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
1911, 18jca 304 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)))
20 eqcom 2172 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
2120orbi2i 757 . . . . . . . 8 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2221anbi1i 455 . . . . . . 7 (((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2319, 22sylib 121 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
24 ordir 812 . . . . . 6 (((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2523, 24sylibr 133 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵))
2625ord 719 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵𝐴𝐴𝐵) → 𝐴 = 𝐵))
274, 26mpd 13 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵)
28273expia 1200 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
29 suceq 4387 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
3028, 29impbid1 141 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdn 13852  ax-bdal 13853  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-infvn 13976
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator