Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano4 GIF version

Theorem bj-peano4 13324
Description: Remove from peano4 4519 dependency on ax-setind 4460. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem bj-peano4
StepHypRef Expression
1 3simpa 979 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
2 pm3.22 263 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ∧ 𝐴 ∈ ω))
3 bj-nnen2lp 13323 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ¬ (𝐵𝐴𝐴𝐵))
41, 2, 33syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ¬ (𝐵𝐴𝐴𝐵))
5 sucidg 4346 . . . . . . . . . . . 12 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
6 eleq2 2204 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
75, 6syl5ibrcom 156 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
8 elsucg 4334 . . . . . . . . . . 11 (𝐵 ∈ ω → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
97, 8sylibd 148 . . . . . . . . . 10 (𝐵 ∈ ω → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
109imp 123 . . . . . . . . 9 ((𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
11103adant1 1000 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
12 sucidg 4346 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
13 eleq2 2204 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
1412, 13syl5ibcom 154 . . . . . . . . . . 11 (𝐴 ∈ ω → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
15 elsucg 4334 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
1614, 15sylibd 148 . . . . . . . . . 10 (𝐴 ∈ ω → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
1716imp 123 . . . . . . . . 9 ((𝐴 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
18173adant2 1001 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
1911, 18jca 304 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)))
20 eqcom 2142 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
2120orbi2i 752 . . . . . . . 8 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
2221anbi1i 454 . . . . . . 7 (((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2319, 22sylib 121 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
24 ordir 807 . . . . . 6 (((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2523, 24sylibr 133 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵))
2625ord 714 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵𝐴𝐴𝐵) → 𝐴 = 𝐵))
274, 26mpd 13 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵)
28273expia 1184 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
29 suceq 4332 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
3028, 29impbid1 141 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  suc csuc 4295  ωcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062  ax-pr 4139  ax-un 4363  ax-bd0 13182  ax-bdor 13185  ax-bdn 13186  ax-bdal 13187  ax-bdex 13188  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253  ax-infvn 13310
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-suc 4301  df-iom 4513  df-bdc 13210  df-bj-ind 13296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator