ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11g GIF version

Theorem suc11g 4534
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11g ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem suc11g
StepHypRef Expression
1 en2lp 4531 . . . 4 ¬ (𝐵𝐴𝐴𝐵)
2 sucidg 4394 . . . . . . . . . . . 12 (𝐵𝑊𝐵 ∈ suc 𝐵)
3 eleq2 2230 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
42, 3syl5ibrcom 156 . . . . . . . . . . 11 (𝐵𝑊 → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
5 elsucg 4382 . . . . . . . . . . 11 (𝐵𝑊 → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
64, 5sylibd 148 . . . . . . . . . 10 (𝐵𝑊 → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
76imp 123 . . . . . . . . 9 ((𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
873adant1 1005 . . . . . . . 8 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
9 sucidg 4394 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ suc 𝐴)
10 eleq2 2230 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
119, 10syl5ibcom 154 . . . . . . . . . . 11 (𝐴𝑉 → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
12 elsucg 4382 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
1311, 12sylibd 148 . . . . . . . . . 10 (𝐴𝑉 → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
1413imp 123 . . . . . . . . 9 ((𝐴𝑉 ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
15143adant2 1006 . . . . . . . 8 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
168, 15jca 304 . . . . . . 7 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)))
17 eqcom 2167 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
1817orbi2i 752 . . . . . . . 8 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
1918anbi1i 454 . . . . . . 7 (((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2016, 19sylib 121 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
21 ordir 807 . . . . . 6 (((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2220, 21sylibr 133 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵))
2322ord 714 . . . 4 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵𝐴𝐴𝐵) → 𝐴 = 𝐵))
241, 23mpi 15 . . 3 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵)
25243expia 1195 . 2 ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
26 suceq 4380 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
2725, 26impbid1 141 1 ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-sn 3582  df-pr 3583  df-suc 4349
This theorem is referenced by:  suc11  4535  peano4  4574  frecsuclem  6374
  Copyright terms: Public domain W3C validator