Proof of Theorem suc11g
| Step | Hyp | Ref
| Expression |
| 1 | | en2lp 4590 |
. . . 4
⊢ ¬
(𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) |
| 2 | | sucidg 4451 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ suc 𝐵) |
| 3 | | eleq2 2260 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐵)) |
| 4 | 2, 3 | syl5ibrcom 157 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑊 → (suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴)) |
| 5 | | elsucg 4439 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
| 6 | 4, 5 | sylibd 149 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → (suc 𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
| 7 | 6 | imp 124 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
| 8 | 7 | 3adant1 1017 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
| 9 | | sucidg 4451 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
| 10 | | eleq2 2260 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ suc 𝐵)) |
| 11 | 9, 10 | syl5ibcom 155 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵)) |
| 12 | | elsucg 4439 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 13 | 11, 12 | sylibd 149 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 14 | 13 | imp 124 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| 15 | 14 | 3adant2 1018 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| 16 | 8, 15 | jca 306 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 17 | | eqcom 2198 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 18 | 17 | orbi2i 763 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
| 19 | 18 | anbi1i 458 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) ↔ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 20 | 16, 19 | sylib 122 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 21 | | ordir 818 |
. . . . . 6
⊢ (((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 22 | 20, 21 | sylibr 134 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) ∨ 𝐴 = 𝐵)) |
| 23 | 22 | ord 725 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 𝐵)) |
| 24 | 1, 23 | mpi 15 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵) |
| 25 | 24 | 3expia 1207 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵)) |
| 26 | | suceq 4437 |
. 2
⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| 27 | 25, 26 | impbid1 142 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) |