ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11g GIF version

Theorem suc11g 4553
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11g ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))

Proof of Theorem suc11g
StepHypRef Expression
1 en2lp 4550 . . . 4 ¬ (𝐵𝐴𝐴𝐵)
2 sucidg 4413 . . . . . . . . . . . 12 (𝐵𝑊𝐵 ∈ suc 𝐵)
3 eleq2 2241 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴𝐵 ∈ suc 𝐵))
42, 3syl5ibrcom 157 . . . . . . . . . . 11 (𝐵𝑊 → (suc 𝐴 = suc 𝐵𝐵 ∈ suc 𝐴))
5 elsucg 4401 . . . . . . . . . . 11 (𝐵𝑊 → (𝐵 ∈ suc 𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
64, 5sylibd 149 . . . . . . . . . 10 (𝐵𝑊 → (suc 𝐴 = suc 𝐵 → (𝐵𝐴𝐵 = 𝐴)))
76imp 124 . . . . . . . . 9 ((𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
873adant1 1015 . . . . . . . 8 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵𝐴𝐵 = 𝐴))
9 sucidg 4413 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ suc 𝐴)
10 eleq2 2241 . . . . . . . . . . . 12 (suc 𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴𝐴 ∈ suc 𝐵))
119, 10syl5ibcom 155 . . . . . . . . . . 11 (𝐴𝑉 → (suc 𝐴 = suc 𝐵𝐴 ∈ suc 𝐵))
12 elsucg 4401 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
1311, 12sylibd 149 . . . . . . . . . 10 (𝐴𝑉 → (suc 𝐴 = suc 𝐵 → (𝐴𝐵𝐴 = 𝐵)))
1413imp 124 . . . . . . . . 9 ((𝐴𝑉 ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
15143adant2 1016 . . . . . . . 8 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐴𝐵𝐴 = 𝐵))
168, 15jca 306 . . . . . . 7 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)))
17 eqcom 2179 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
1817orbi2i 762 . . . . . . . 8 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
1918anbi1i 458 . . . . . . 7 (((𝐵𝐴𝐵 = 𝐴) ∧ (𝐴𝐵𝐴 = 𝐵)) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2016, 19sylib 122 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
21 ordir 817 . . . . . 6 (((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵𝐴𝐴 = 𝐵) ∧ (𝐴𝐵𝐴 = 𝐵)))
2220, 21sylibr 134 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵𝐴𝐴𝐵) ∨ 𝐴 = 𝐵))
2322ord 724 . . . 4 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵𝐴𝐴𝐵) → 𝐴 = 𝐵))
241, 23mpi 15 . . 3 ((𝐴𝑉𝐵𝑊 ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵)
25243expia 1205 . 2 ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
26 suceq 4399 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
2725, 26impbid1 142 1 ((𝐴𝑉𝐵𝑊) → (suc 𝐴 = suc 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  suc csuc 4362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-dif 3131  df-un 3133  df-sn 3597  df-pr 3598  df-suc 4368
This theorem is referenced by:  suc11  4554  peano4  4593  frecsuclem  6401
  Copyright terms: Public domain W3C validator