Proof of Theorem suc11g
Step | Hyp | Ref
| Expression |
1 | | en2lp 4538 |
. . . 4
⊢ ¬
(𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) |
2 | | sucidg 4401 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ suc 𝐵) |
3 | | eleq2 2234 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 = suc 𝐵 → (𝐵 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐵)) |
4 | 2, 3 | syl5ibrcom 156 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑊 → (suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴)) |
5 | | elsucg 4389 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ suc 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
6 | 4, 5 | sylibd 148 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → (suc 𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
7 | 6 | imp 123 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
8 | 7 | 3adant1 1010 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) |
9 | | sucidg 4401 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
10 | | eleq2 2234 |
. . . . . . . . . . . 12
⊢ (suc
𝐴 = suc 𝐵 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ suc 𝐵)) |
11 | 9, 10 | syl5ibcom 154 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵)) |
12 | | elsucg 4389 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
13 | 11, 12 | sylibd 148 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
14 | 13 | imp 123 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
15 | 14 | 3adant2 1011 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
16 | 8, 15 | jca 304 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
17 | | eqcom 2172 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
18 | 17 | orbi2i 757 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
19 | 18 | anbi1i 455 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) ↔ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
20 | 16, 19 | sylib 121 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
21 | | ordir 812 |
. . . . . 6
⊢ (((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) ∨ 𝐴 = 𝐵) ↔ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ∧ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
22 | 20, 21 | sylibr 133 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → ((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) ∨ 𝐴 = 𝐵)) |
23 | 22 | ord 719 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → (¬ (𝐵 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 𝐵)) |
24 | 1, 23 | mpi 15 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ suc 𝐴 = suc 𝐵) → 𝐴 = 𝐵) |
25 | 24 | 3expia 1200 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵)) |
26 | | suceq 4387 |
. 2
⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
27 | 25, 26 | impbid1 141 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) |