Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantru | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 298 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.71 387 mpbiran2 936 isset 2736 rexcom4b 2755 eueq 2901 ssrabeq 3234 a9evsep 4111 pwunim 4271 elvv 4673 elvvv 4674 resopab 4935 funfn 5228 dffn2 5349 dffn3 5358 dffn4 5426 fsn 5668 ixp0x 6704 ac6sfi 6876 fimax2gtri 6879 nninfwlporlemd 7148 xrmaxiflemcom 11212 trirec0xor 14077 |
Copyright terms: Public domain | W3C validator |