ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru GIF version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1 𝜑
Assertion
Ref Expression
biantru (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2 𝜑
2 iba 300 . 2 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  944  isset  2783  rexcom4b  2802  eueq  2951  ssrabeq  3288  a9evsep  4182  pwunim  4351  elvv  4755  elvvv  4756  resopab  5022  funfn  5320  dffn2  5447  dffn3  5456  dffn4  5526  fsn  5775  ixp0x  6836  ac6sfi  7021  fimax2gtri  7024  nninfwlporlemd  7300  ccatrcan  11210  xrmaxiflemcom  11675  plyun0  15323  trirec0xor  16186
  Copyright terms: Public domain W3C validator