| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantru | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 300 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 mpbiran2 944 isset 2778 rexcom4b 2797 eueq 2944 ssrabeq 3280 a9evsep 4166 pwunim 4333 elvv 4737 elvvv 4738 resopab 5003 funfn 5301 dffn2 5427 dffn3 5436 dffn4 5504 fsn 5752 ixp0x 6813 ac6sfi 6995 fimax2gtri 6998 nninfwlporlemd 7274 xrmaxiflemcom 11560 plyun0 15208 trirec0xor 15984 |
| Copyright terms: Public domain | W3C validator |