| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantru | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 300 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 mpbiran2 943 isset 2769 rexcom4b 2788 eueq 2935 ssrabeq 3270 a9evsep 4155 pwunim 4321 elvv 4725 elvvv 4726 resopab 4990 funfn 5288 dffn2 5409 dffn3 5418 dffn4 5486 fsn 5734 ixp0x 6785 ac6sfi 6959 fimax2gtri 6962 nninfwlporlemd 7238 xrmaxiflemcom 11414 plyun0 14972 trirec0xor 15689 |
| Copyright terms: Public domain | W3C validator |