| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantru | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biantru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantru.1 | . 2 ⊢ 𝜑 | |
| 2 | iba 300 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 mpbiran2 947 isset 2806 rexcom4b 2825 eueq 2974 ssrabeq 3311 a9evsep 4205 pwunim 4376 elvv 4780 elvvv 4781 resopab 5048 funfn 5347 dffn2 5474 dffn3 5483 dffn4 5553 fsn 5806 ixp0x 6871 ac6sfi 7056 fimax2gtri 7059 nninfwlporlemd 7335 ccatrcan 11246 xrmaxiflemcom 11755 plyun0 15404 trirec0xor 16372 |
| Copyright terms: Public domain | W3C validator |