![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantru | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 300 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.71 389 mpbiran2 942 isset 2755 rexcom4b 2774 eueq 2920 ssrabeq 3254 a9evsep 4137 pwunim 4298 elvv 4700 elvvv 4701 resopab 4963 funfn 5258 dffn2 5379 dffn3 5388 dffn4 5456 fsn 5701 ixp0x 6740 ac6sfi 6912 fimax2gtri 6915 nninfwlporlemd 7184 xrmaxiflemcom 11271 trirec0xor 15090 |
Copyright terms: Public domain | W3C validator |