ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru GIF version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1 𝜑
Assertion
Ref Expression
biantru (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2 𝜑
2 iba 300 . 2 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  943  isset  2769  rexcom4b  2788  eueq  2935  ssrabeq  3270  a9evsep  4155  pwunim  4321  elvv  4725  elvvv  4726  resopab  4990  funfn  5288  dffn2  5409  dffn3  5418  dffn4  5486  fsn  5734  ixp0x  6785  ac6sfi  6959  fimax2gtri  6962  nninfwlporlemd  7238  xrmaxiflemcom  11414  plyun0  14972  trirec0xor  15689
  Copyright terms: Public domain W3C validator