Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantru | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 298 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.71 387 mpbiran2 936 isset 2736 rexcom4b 2755 eueq 2901 ssrabeq 3234 a9evsep 4109 pwunim 4269 elvv 4671 elvvv 4672 resopab 4933 funfn 5226 dffn2 5347 dffn3 5356 dffn4 5424 fsn 5665 ixp0x 6700 ac6sfi 6872 fimax2gtri 6875 xrmaxiflemcom 11199 trirec0xor 13999 |
Copyright terms: Public domain | W3C validator |