ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru GIF version

Theorem biantru 300
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1 𝜑
Assertion
Ref Expression
biantru (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2 𝜑
2 iba 298 . 2 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.71  387  mpbiran2  936  isset  2736  rexcom4b  2755  eueq  2901  ssrabeq  3234  a9evsep  4109  pwunim  4269  elvv  4671  elvvv  4672  resopab  4933  funfn  5226  dffn2  5347  dffn3  5356  dffn4  5424  fsn  5665  ixp0x  6700  ac6sfi  6872  fimax2gtri  6875  xrmaxiflemcom  11199  trirec0xor  13999
  Copyright terms: Public domain W3C validator