ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantru GIF version

Theorem biantru 302
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
biantru.1 𝜑
Assertion
Ref Expression
biantru (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biantru
StepHypRef Expression
1 biantru.1 . 2 𝜑
2 iba 300 . 2 (𝜑 → (𝜓 ↔ (𝜓𝜑)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  mpbiran2  941  isset  2745  rexcom4b  2764  eueq  2910  ssrabeq  3244  a9evsep  4127  pwunim  4288  elvv  4690  elvvv  4691  resopab  4953  funfn  5248  dffn2  5369  dffn3  5378  dffn4  5446  fsn  5690  ixp0x  6728  ac6sfi  6900  fimax2gtri  6903  nninfwlporlemd  7172  xrmaxiflemcom  11259  trirec0xor  14878
  Copyright terms: Public domain W3C validator