ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopab3 GIF version

Theorem dmopab3 4817
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 2449 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃𝑦𝜑))
2 pm4.71 387 . . 3 ((𝑥𝐴 → ∃𝑦𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
32albii 1458 . 2 (∀𝑥(𝑥𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
4 dmopab 4815 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)}
5 19.42v 1894 . . . . . 6 (∃𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝜑))
65abbii 2282 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
74, 6eqtri 2186 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
87eqeq1i 2173 . . 3 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} = 𝐴)
9 eqcom 2167 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} = 𝐴)
10 abeq2 2275 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
118, 9, 103bitr2ri 208 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)) ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
121, 3, 113bitri 205 1 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wral 2444  {copab 4042  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-dm 4614
This theorem is referenced by:  dmxpm  4824  dmxpid  4825  fnopabg  5311  acfun  7163  ccfunen  7205
  Copyright terms: Public domain W3C validator