ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopab3 GIF version

Theorem dmopab3 4710
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 2393 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃𝑦𝜑))
2 pm4.71 384 . . 3 ((𝑥𝐴 → ∃𝑦𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
32albii 1427 . 2 (∀𝑥(𝑥𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
4 dmopab 4708 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)}
5 19.42v 1858 . . . . . 6 (∃𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝜑))
65abbii 2228 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
74, 6eqtri 2133 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
87eqeq1i 2120 . . 3 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} = 𝐴)
9 eqcom 2115 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} = 𝐴)
10 abeq2 2221 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)))
118, 9, 103bitr2ri 208 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦𝜑)) ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
121, 3, 113bitri 205 1 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1310   = wceq 1312  wex 1449  wcel 1461  {cab 2099  wral 2388  {copab 3946  dom cdm 4497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-dm 4507
This theorem is referenced by:  dmxpm  4717  dmxpid  4718  fnopabg  5202  acfun  7008
  Copyright terms: Public domain W3C validator