Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmopab3 | GIF version |
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
Ref | Expression |
---|---|
dmopab3 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2440 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑)) | |
2 | pm4.71 387 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
3 | 2 | albii 1450 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) |
4 | dmopab 4794 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | 19.42v 1886 | . . . . . 6 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
6 | 5 | abbii 2273 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
7 | 4, 6 | eqtri 2178 | . . . 4 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} |
8 | 7 | eqeq1i 2165 | . . 3 ⊢ (dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) |
9 | eqcom 2159 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} = 𝐴) | |
10 | abeq2 2266 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑))) | |
11 | 8, 9, 10 | 3bitr2ri 208 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
12 | 1, 3, 11 | 3bitri 205 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1333 = wceq 1335 ∃wex 1472 ∈ wcel 2128 {cab 2143 ∀wral 2435 {copab 4024 dom cdm 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-dm 4593 |
This theorem is referenced by: dmxpm 4803 dmxpid 4804 fnopabg 5290 acfun 7125 ccfunen 7167 |
Copyright terms: Public domain | W3C validator |