ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2id GIF version

Theorem bitr2id 192
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2id.1 (𝜑𝜓)
bitr2id.2 (𝜒 → (𝜓𝜃))
Assertion
Ref Expression
bitr2id (𝜒 → (𝜃𝜑))

Proof of Theorem bitr2id
StepHypRef Expression
1 bitr2id.1 . . 3 (𝜑𝜓)
2 bitr2id.2 . . 3 (𝜒 → (𝜓𝜃))
31, 2syl5bb 191 . 2 (𝜒 → (𝜑𝜃))
43bicomd 140 1 (𝜒 → (𝜃𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bitr3di  194  pm5.17dc  894  dn1dc  950  csbabg  3106  uniiunlem  3231  inimasn  5021  cnvpom  5146  fnresdisj  5298  f1oiso  5794  reldm  6154  mptelixpg  6700  1idprl  7531  1idpru  7532  nndiv  8898  fzn  9977  fz1sbc  10031  metrest  13156
  Copyright terms: Public domain W3C validator