ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2id GIF version

Theorem bitr2id 193
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2id.1 (𝜑𝜓)
bitr2id.2 (𝜒 → (𝜓𝜃))
Assertion
Ref Expression
bitr2id (𝜒 → (𝜃𝜑))

Proof of Theorem bitr2id
StepHypRef Expression
1 bitr2id.1 . . 3 (𝜑𝜓)
2 bitr2id.2 . . 3 (𝜒 → (𝜓𝜃))
31, 2bitrid 192 . 2 (𝜒 → (𝜑𝜃))
43bicomd 141 1 (𝜒 → (𝜃𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr3di  195  pm5.17dc  905  dn1dc  961  csbabg  3130  uniiunlem  3256  inimasn  5058  cnvpom  5183  fnresdisj  5338  f1oiso  5840  reldm  6201  mptelixpg  6748  1idprl  7603  1idpru  7604  nndiv  8974  fzn  10056  fz1sbc  10110  grpid  12936  metrest  14302
  Copyright terms: Public domain W3C validator