![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bitrid 192 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bitr3di 195 pm5.17dc 905 dn1dc 962 csbabg 3143 uniiunlem 3269 inimasn 5084 cnvpom 5209 fnresdisj 5365 f1oiso 5870 reldm 6241 mptelixpg 6790 1idprl 7652 1idpru 7653 nndiv 9025 fzn 10111 fz1sbc 10165 grpid 13114 znleval 14152 metrest 14685 |
Copyright terms: Public domain | W3C validator |