ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivw GIF version

Theorem ralrimivw 2580
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
ralrimivw.1 (𝜑𝜓)
Assertion
Ref Expression
ralrimivw (𝜑 → ∀𝑥𝐴 𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem ralrimivw
StepHypRef Expression
1 ralrimivw.1 . . 3 (𝜑𝜓)
21a1d 22 . 2 (𝜑 → (𝑥𝐴𝜓))
32ralrimiv 2578 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489
This theorem is referenced by:  r19.27v  2633  r19.28v  2634  exse  4384  sosng  4749  dmxpm  4899  exse2  5057  funco  5312  acexmidlemph  5939  mpoeq12  6007  xpexgALT  6220  mpoexg  6299  rdgtfr  6462  rdgruledefgg  6463  rdgivallem  6469  frecabex  6486  frectfr  6488  omfnex  6537  oeiv  6544  uniqs  6682  exmidpw2en  7011  sbthlemi5  7065  sbthlemi6  7066  updjud  7186  exmidfodomrlemim  7311  exmidaclem  7322  exmidapne  7374  cc4f  7383  genpdisj  7638  ltexprlemloc  7722  recexprlemloc  7746  cauappcvgprlemrnd  7765  cauappcvgprlemdisj  7766  caucvgprlemrnd  7788  caucvgprlemdisj  7789  caucvgprprlemrnd  7816  caucvgprprlemdisj  7817  suplocexpr  7840  zsupssdc  10383  nninfinf  10590  recan  11453  climconst  11634  sumeq2ad  11713  dvdsext  12199  pc11  12687  ptex  13129  prdsex  13134  prdsval  13138  prdsbaslemss  13139  prdsbas  13141  imasex  13170  imasbas  13172  imasplusg  13173  imasmulr  13174  imasaddfnlemg  13179  imasaddvallemg  13180  quslem  13189  grpinvfng  13409  scaffng  14104  neif  14646  lmconst  14721  cndis  14746  plyval  15237  lgsquadlem2  15588  2sqlem10  15635
  Copyright terms: Public domain W3C validator