Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralrimiv 2538 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: r19.27v 2593 r19.28v 2594 exse 4314 sosng 4677 dmxpm 4824 exse2 4978 funco 5228 acexmidlemph 5835 mpoeq12 5902 xpexgALT 6101 mpoexg 6179 rdgtfr 6342 rdgruledefgg 6343 rdgivallem 6349 frecabex 6366 frectfr 6368 omfnex 6417 oeiv 6424 uniqs 6559 sbthlemi5 6926 sbthlemi6 6927 updjud 7047 exmidfodomrlemim 7157 exmidaclem 7164 cc4f 7210 genpdisj 7464 ltexprlemloc 7548 recexprlemloc 7572 cauappcvgprlemrnd 7591 cauappcvgprlemdisj 7592 caucvgprlemrnd 7614 caucvgprlemdisj 7615 caucvgprprlemrnd 7642 caucvgprprlemdisj 7643 suplocexpr 7666 recan 11051 climconst 11231 sumeq2ad 11310 dvdsext 11793 zsupssdc 11887 pc11 12262 neif 12781 lmconst 12856 cndis 12881 2sqlem10 13601 |
Copyright terms: Public domain | W3C validator |