| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralrimiv 2569 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: r19.27v 2624 r19.28v 2625 exse 4372 sosng 4737 dmxpm 4887 exse2 5044 funco 5299 acexmidlemph 5918 mpoeq12 5986 xpexgALT 6199 mpoexg 6278 rdgtfr 6441 rdgruledefgg 6442 rdgivallem 6448 frecabex 6465 frectfr 6467 omfnex 6516 oeiv 6523 uniqs 6661 exmidpw2en 6982 sbthlemi5 7036 sbthlemi6 7037 updjud 7157 exmidfodomrlemim 7282 exmidaclem 7293 exmidapne 7345 cc4f 7354 genpdisj 7609 ltexprlemloc 7693 recexprlemloc 7717 cauappcvgprlemrnd 7736 cauappcvgprlemdisj 7737 caucvgprlemrnd 7759 caucvgprlemdisj 7760 caucvgprprlemrnd 7787 caucvgprprlemdisj 7788 suplocexpr 7811 zsupssdc 10347 nninfinf 10554 recan 11293 climconst 11474 sumeq2ad 11553 dvdsext 12039 pc11 12527 ptex 12968 prdsex 12973 prdsval 12977 prdsbaslemss 12978 prdsbas 12980 imasex 13009 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfnlemg 13018 imasaddvallemg 13019 quslem 13028 grpinvfng 13248 scaffng 13943 neif 14485 lmconst 14560 cndis 14585 plyval 15076 lgsquadlem2 15427 2sqlem10 15474 |
| Copyright terms: Public domain | W3C validator |