| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralrimiv 2578 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: r19.27v 2633 r19.28v 2634 exse 4384 sosng 4749 dmxpm 4899 exse2 5057 funco 5312 acexmidlemph 5939 mpoeq12 6007 xpexgALT 6220 mpoexg 6299 rdgtfr 6462 rdgruledefgg 6463 rdgivallem 6469 frecabex 6486 frectfr 6488 omfnex 6537 oeiv 6544 uniqs 6682 exmidpw2en 7011 sbthlemi5 7065 sbthlemi6 7066 updjud 7186 exmidfodomrlemim 7311 exmidaclem 7322 exmidapne 7374 cc4f 7383 genpdisj 7638 ltexprlemloc 7722 recexprlemloc 7746 cauappcvgprlemrnd 7765 cauappcvgprlemdisj 7766 caucvgprlemrnd 7788 caucvgprlemdisj 7789 caucvgprprlemrnd 7816 caucvgprprlemdisj 7817 suplocexpr 7840 zsupssdc 10383 nninfinf 10590 recan 11453 climconst 11634 sumeq2ad 11713 dvdsext 12199 pc11 12687 ptex 13129 prdsex 13134 prdsval 13138 prdsbaslemss 13139 prdsbas 13141 imasex 13170 imasbas 13172 imasplusg 13173 imasmulr 13174 imasaddfnlemg 13179 imasaddvallemg 13180 quslem 13189 grpinvfng 13409 scaffng 14104 neif 14646 lmconst 14721 cndis 14746 plyval 15237 lgsquadlem2 15588 2sqlem10 15635 |
| Copyright terms: Public domain | W3C validator |