| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralrimiv 2580 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: r19.27v 2635 r19.28v 2636 exse 4401 sosng 4766 dmxpm 4917 exse2 5075 funco 5330 acexmidlemph 5960 mpoeq12 6028 xpexgALT 6241 mpoexg 6320 rdgtfr 6483 rdgruledefgg 6484 rdgivallem 6490 frecabex 6507 frectfr 6509 omfnex 6558 oeiv 6565 uniqs 6703 exmidpw2en 7035 sbthlemi5 7089 sbthlemi6 7090 updjud 7210 exmidfodomrlemim 7340 exmidaclem 7351 exmidapne 7407 cc4f 7416 genpdisj 7671 ltexprlemloc 7755 recexprlemloc 7779 cauappcvgprlemrnd 7798 cauappcvgprlemdisj 7799 caucvgprlemrnd 7821 caucvgprlemdisj 7822 caucvgprprlemrnd 7849 caucvgprprlemdisj 7850 suplocexpr 7873 zsupssdc 10418 nninfinf 10625 recan 11535 climconst 11716 sumeq2ad 11795 dvdsext 12281 pc11 12769 ptex 13211 prdsex 13216 prdsval 13220 prdsbaslemss 13221 prdsbas 13223 imasex 13252 imasbas 13254 imasplusg 13255 imasmulr 13256 imasaddfnlemg 13261 imasaddvallemg 13262 quslem 13271 grpinvfng 13491 scaffng 14186 neif 14728 lmconst 14803 cndis 14828 plyval 15319 lgsquadlem2 15670 2sqlem10 15717 |
| Copyright terms: Public domain | W3C validator |