Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralrimiv 2547 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-ral 2458 |
This theorem is referenced by: r19.27v 2602 r19.28v 2603 exse 4330 sosng 4693 dmxpm 4840 exse2 4995 funco 5248 acexmidlemph 5858 mpoeq12 5925 xpexgALT 6124 mpoexg 6202 rdgtfr 6365 rdgruledefgg 6366 rdgivallem 6372 frecabex 6389 frectfr 6391 omfnex 6440 oeiv 6447 uniqs 6583 sbthlemi5 6950 sbthlemi6 6951 updjud 7071 exmidfodomrlemim 7190 exmidaclem 7197 cc4f 7243 genpdisj 7497 ltexprlemloc 7581 recexprlemloc 7605 cauappcvgprlemrnd 7624 cauappcvgprlemdisj 7625 caucvgprlemrnd 7647 caucvgprlemdisj 7648 caucvgprprlemrnd 7675 caucvgprprlemdisj 7676 suplocexpr 7699 recan 11086 climconst 11266 sumeq2ad 11345 dvdsext 11828 zsupssdc 11922 pc11 12297 grpinvfng 12788 neif 13221 lmconst 13296 cndis 13321 2sqlem10 14041 |
Copyright terms: Public domain | W3C validator |