![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralrimiv 2566 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: r19.27v 2621 r19.28v 2622 exse 4368 sosng 4733 dmxpm 4883 exse2 5040 funco 5295 acexmidlemph 5912 mpoeq12 5979 xpexgALT 6187 mpoexg 6266 rdgtfr 6429 rdgruledefgg 6430 rdgivallem 6436 frecabex 6453 frectfr 6455 omfnex 6504 oeiv 6511 uniqs 6649 exmidpw2en 6970 sbthlemi5 7022 sbthlemi6 7023 updjud 7143 exmidfodomrlemim 7263 exmidaclem 7270 exmidapne 7322 cc4f 7331 genpdisj 7585 ltexprlemloc 7669 recexprlemloc 7693 cauappcvgprlemrnd 7712 cauappcvgprlemdisj 7713 caucvgprlemrnd 7735 caucvgprlemdisj 7736 caucvgprprlemrnd 7763 caucvgprprlemdisj 7764 suplocexpr 7787 nninfinf 10517 recan 11256 climconst 11436 sumeq2ad 11515 dvdsext 12000 zsupssdc 12094 pc11 12472 ptex 12878 prdsex 12883 imasex 12891 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfnlemg 12900 imasaddvallemg 12901 quslem 12910 grpinvfng 13119 scaffng 13808 neif 14320 lmconst 14395 cndis 14420 plyval 14911 lgsquadlem2 15235 2sqlem10 15282 |
Copyright terms: Public domain | W3C validator |