| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralrimiv 2569 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: r19.27v 2624 r19.28v 2625 exse 4372 sosng 4737 dmxpm 4887 exse2 5044 funco 5299 acexmidlemph 5918 mpoeq12 5986 xpexgALT 6199 mpoexg 6278 rdgtfr 6441 rdgruledefgg 6442 rdgivallem 6448 frecabex 6465 frectfr 6467 omfnex 6516 oeiv 6523 uniqs 6661 exmidpw2en 6982 sbthlemi5 7036 sbthlemi6 7037 updjud 7157 exmidfodomrlemim 7280 exmidaclem 7291 exmidapne 7343 cc4f 7352 genpdisj 7607 ltexprlemloc 7691 recexprlemloc 7715 cauappcvgprlemrnd 7734 cauappcvgprlemdisj 7735 caucvgprlemrnd 7757 caucvgprlemdisj 7758 caucvgprprlemrnd 7785 caucvgprprlemdisj 7786 suplocexpr 7809 zsupssdc 10345 nninfinf 10552 recan 11291 climconst 11472 sumeq2ad 11551 dvdsext 12037 pc11 12525 ptex 12966 prdsex 12971 prdsval 12975 prdsbaslemss 12976 prdsbas 12978 imasex 13007 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfnlemg 13016 imasaddvallemg 13017 quslem 13026 grpinvfng 13246 scaffng 13941 neif 14461 lmconst 14536 cndis 14561 plyval 15052 lgsquadlem2 15403 2sqlem10 15450 |
| Copyright terms: Public domain | W3C validator |