| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralrimivw | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| ralrimivw.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | 
| 3 | 2 | ralrimiv 2569 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 | 
| This theorem is referenced by: r19.27v 2624 r19.28v 2625 exse 4371 sosng 4736 dmxpm 4886 exse2 5043 funco 5298 acexmidlemph 5915 mpoeq12 5982 xpexgALT 6190 mpoexg 6269 rdgtfr 6432 rdgruledefgg 6433 rdgivallem 6439 frecabex 6456 frectfr 6458 omfnex 6507 oeiv 6514 uniqs 6652 exmidpw2en 6973 sbthlemi5 7027 sbthlemi6 7028 updjud 7148 exmidfodomrlemim 7268 exmidaclem 7275 exmidapne 7327 cc4f 7336 genpdisj 7590 ltexprlemloc 7674 recexprlemloc 7698 cauappcvgprlemrnd 7717 cauappcvgprlemdisj 7718 caucvgprlemrnd 7740 caucvgprlemdisj 7741 caucvgprprlemrnd 7768 caucvgprprlemdisj 7769 suplocexpr 7792 zsupssdc 10328 nninfinf 10535 recan 11274 climconst 11455 sumeq2ad 11534 dvdsext 12020 pc11 12500 ptex 12935 prdsex 12940 imasex 12948 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfnlemg 12957 imasaddvallemg 12958 quslem 12967 grpinvfng 13176 scaffng 13865 neif 14377 lmconst 14452 cndis 14477 plyval 14968 lgsquadlem2 15319 2sqlem10 15366 | 
| Copyright terms: Public domain | W3C validator |