| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rr19.28v | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.) |
| Ref | Expression |
|---|---|
| rr19.28v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 2560 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜑) |
| 3 | biidd 172 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
| 4 | 3 | rspcv 2864 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝜑 → 𝜑)) |
| 5 | 2, 4 | syl5 32 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → 𝜑)) |
| 6 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 7 | 6 | ralimi 2560 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜓) |
| 8 | 7 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜓)) |
| 9 | 5, 8 | jcad 307 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 10 | 9 | ralimia 2558 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| 11 | r19.28av 2633 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) → ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 12 | 11 | ralimi 2560 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 13 | 10, 12 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |