ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rr19.28v GIF version

Theorem rr19.28v 2824
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 108 . . . . . 6 ((𝜑𝜓) → 𝜑)
21ralimi 2495 . . . . 5 (∀𝑦𝐴 (𝜑𝜓) → ∀𝑦𝐴 𝜑)
3 biidd 171 . . . . . 6 (𝑦 = 𝑥 → (𝜑𝜑))
43rspcv 2785 . . . . 5 (𝑥𝐴 → (∀𝑦𝐴 𝜑𝜑))
52, 4syl5 32 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝜑𝜓) → 𝜑))
6 simpr 109 . . . . . 6 ((𝜑𝜓) → 𝜓)
76ralimi 2495 . . . . 5 (∀𝑦𝐴 (𝜑𝜓) → ∀𝑦𝐴 𝜓)
87a1i 9 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝜑𝜓) → ∀𝑦𝐴 𝜓))
95, 8jcad 305 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝜑𝜓) → (𝜑 ∧ ∀𝑦𝐴 𝜓)))
109ralimia 2493 . 2 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) → ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
11 r19.28av 2568 . . 3 ((𝜑 ∧ ∀𝑦𝐴 𝜓) → ∀𝑦𝐴 (𝜑𝜓))
1211ralimi 2495 . 2 (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) → ∀𝑥𝐴𝑦𝐴 (𝜑𝜓))
1310, 12impbii 125 1 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480  wral 2416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator