ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.44av GIF version

Theorem r19.44av 2629
Description: One direction of a restricted quantifier version of Theorem 19.44 of [Margaris] p. 90. The other direction doesn't hold when 𝐴 is empty. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.44av (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.44av
StepHypRef Expression
1 r19.43 2628 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 idd 21 . . . 4 (𝑥𝐴 → (𝜓𝜓))
32rexlimiv 2581 . . 3 (∃𝑥𝐴 𝜓𝜓)
43orim2i 756 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) → (∃𝑥𝐴 𝜑𝜓))
51, 4sylbi 120 1 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453  df-rex 2454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator