Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.43 | GIF version |
Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof rewritten by Jim Kingdon, 5-Jun-2018.) |
Ref | Expression |
---|---|
r19.43 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2459 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓))) | |
2 | andi 818 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
3 | 2 | exbii 1603 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∨ 𝜓)) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
4 | 1, 3 | bitri 184 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
5 | 19.43 1626 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) | |
6 | 4, 5 | bitri 184 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
7 | df-rex 2459 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
8 | df-rex 2459 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | 7, 8 | orbi12i 764 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) |
10 | 6, 9 | bitr4i 187 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 708 ∃wex 1490 ∈ wcel 2146 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-rex 2459 |
This theorem is referenced by: r19.44av 2634 r19.45av 2635 r19.45mv 3514 r19.44mv 3515 iunun 3960 ltexprlemloc 7581 pythagtriplem2 12233 pythagtrip 12250 |
Copyright terms: Public domain | W3C validator |