ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.43 GIF version

Theorem r19.43 2652
Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof rewritten by Jim Kingdon, 5-Jun-2018.)
Assertion
Ref Expression
r19.43 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.43
StepHypRef Expression
1 df-rex 2478 . . . 4 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
2 andi 819 . . . . 5 ((𝑥𝐴 ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)))
32exbii 1616 . . . 4 (∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)) ↔ ∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)))
41, 3bitri 184 . . 3 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)))
5 19.43 1639 . . 3 (∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐴𝜓)))
64, 5bitri 184 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐴𝜓)))
7 df-rex 2478 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
8 df-rex 2478 . . 3 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
97, 8orbi12i 765 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐴𝜓)))
106, 9bitr4i 187 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709  wex 1503  wcel 2164  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-rex 2478
This theorem is referenced by:  r19.44av  2653  r19.45av  2654  r19.45mv  3540  r19.44mv  3541  iunun  3991  ltexprlemloc  7667  pythagtriplem2  12404  pythagtrip  12421
  Copyright terms: Public domain W3C validator