![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.45av | GIF version |
Description: Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
r19.45av | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 2539 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | idd 21 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜑)) | |
3 | 2 | rexlimiv 2496 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜑) |
4 | 3 | orim1i 715 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
5 | 1, 4 | sylbi 120 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 667 ∈ wcel 1445 ∃wrex 2371 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-i5r 1480 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-ral 2375 df-rex 2376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |