| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
| Ref | Expression |
|---|---|
| rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | rexlimi 2607 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: rexlimiva 2609 rexlimivw 2610 rexlimivv 2620 r19.36av 2648 r19.44av 2656 r19.45av 2657 rexn0 3550 uniss2 3871 elres 4983 ssimaex 5625 mpoexw 6280 tfrlem5 6381 tfrlem8 6385 ecoptocl 6690 mapsn 6758 elixpsn 6803 ixpsnf1o 6804 findcard 6958 findcard2 6959 findcard2s 6960 fiintim 7001 prnmaddl 7576 0re 8045 cnegexlem2 8221 0cnALT 8235 bndndx 9267 uzn0 9636 ublbneg 9706 rexanuz2 11175 opnneiid 14508 2lgslem1b 15438 2sqlem2 15464 bj-inf2vnlem2 15725 |
| Copyright terms: Public domain | W3C validator |