Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
3 | 1, 2 | rexlimi 2580 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: rexlimiva 2582 rexlimivw 2583 rexlimivv 2593 r19.36av 2621 r19.44av 2629 r19.45av 2630 rexn0 3513 uniss2 3827 elres 4927 ssimaex 5557 mpoexw 6192 tfrlem5 6293 tfrlem8 6297 ecoptocl 6600 mapsn 6668 elixpsn 6713 ixpsnf1o 6714 findcard 6866 findcard2 6867 findcard2s 6868 fiintim 6906 prnmaddl 7452 0re 7920 cnegexlem2 8095 0cnALT 8109 bndndx 9134 uzn0 9502 ublbneg 9572 rexanuz2 10955 opnneiid 12958 2sqlem2 13745 bj-inf2vnlem2 14006 |
Copyright terms: Public domain | W3C validator |