| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
| Ref | Expression |
|---|---|
| rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | rexlimi 2607 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: rexlimiva 2609 rexlimivw 2610 rexlimivv 2620 r19.36av 2648 r19.44av 2656 r19.45av 2657 rexn0 3549 uniss2 3870 elres 4982 ssimaex 5622 mpoexw 6271 tfrlem5 6372 tfrlem8 6376 ecoptocl 6681 mapsn 6749 elixpsn 6794 ixpsnf1o 6795 findcard 6949 findcard2 6950 findcard2s 6951 fiintim 6992 prnmaddl 7557 0re 8026 cnegexlem2 8202 0cnALT 8216 bndndx 9248 uzn0 9617 ublbneg 9687 rexanuz2 11156 opnneiid 14400 2lgslem1b 15330 2sqlem2 15356 bj-inf2vnlem2 15617 |
| Copyright terms: Public domain | W3C validator |