![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
3 | 1, 2 | rexlimi 2604 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: rexlimiva 2606 rexlimivw 2607 rexlimivv 2617 r19.36av 2645 r19.44av 2653 r19.45av 2654 rexn0 3545 uniss2 3866 elres 4978 ssimaex 5618 mpoexw 6266 tfrlem5 6367 tfrlem8 6371 ecoptocl 6676 mapsn 6744 elixpsn 6789 ixpsnf1o 6790 findcard 6944 findcard2 6945 findcard2s 6946 fiintim 6985 prnmaddl 7550 0re 8019 cnegexlem2 8195 0cnALT 8209 bndndx 9239 uzn0 9608 ublbneg 9678 rexanuz2 11135 opnneiid 14332 2sqlem2 15202 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |