Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
3 | 1, 2 | rexlimi 2576 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: rexlimiva 2578 rexlimivw 2579 rexlimivv 2589 r19.36av 2617 r19.44av 2625 r19.45av 2626 rexn0 3507 uniss2 3820 elres 4920 ssimaex 5547 mpoexw 6181 tfrlem5 6282 tfrlem8 6286 ecoptocl 6588 mapsn 6656 elixpsn 6701 ixpsnf1o 6702 findcard 6854 findcard2 6855 findcard2s 6856 fiintim 6894 prnmaddl 7431 0re 7899 cnegexlem2 8074 0cnALT 8088 bndndx 9113 uzn0 9481 ublbneg 9551 rexanuz2 10933 opnneiid 12804 2sqlem2 13591 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |