ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimiv GIF version

Theorem rexlimiv 2477
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
Hypothesis
Ref Expression
rexlimiv.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexlimiv (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimiv
StepHypRef Expression
1 nfv 1462 . 2 𝑥𝜓
2 rexlimiv.1 . 2 (𝑥𝐴 → (𝜑𝜓))
31, 2rexlimi 2476 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434  wrex 2354
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468  ax-i5r 1469
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-ral 2358  df-rex 2359
This theorem is referenced by:  rexlimiva  2478  rexlimivw  2479  rexlimivv  2488  r19.36av  2511  r19.44av  2519  r19.45av  2520  rexn0  3361  uniss2  3658  elres  4705  ssimaex  5310  tfrlem5  6011  tfrlem8  6015  ecoptocl  6309  mapsn  6377  findcard  6534  findcard2  6535  findcard2s  6536  prnmaddl  6952  0re  7391  cnegexlem2  7561  0cnALT  7575  bndndx  8564  uzn0  8929  ublbneg  8993  rexanuz2  10251  bj-inf2vnlem2  11209
  Copyright terms: Public domain W3C validator