| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
| Ref | Expression |
|---|---|
| rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | rexlimi 2641 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimiva 2643 rexlimivw 2644 rexlimivv 2654 r19.36av 2682 r19.44av 2690 r19.45av 2691 rexn0 3590 uniss2 3918 elres 5040 ssimaex 5694 mpoexw 6357 tfrlem5 6458 tfrlem8 6462 ecoptocl 6767 mapsn 6835 elixpsn 6880 ixpsnf1o 6881 findcard 7046 findcard2 7047 findcard2s 7048 fiintim 7089 prnmaddl 7673 0re 8142 cnegexlem2 8318 0cnALT 8332 bndndx 9364 uzn0 9734 ublbneg 9804 rexanuz2 11497 opnneiid 14832 2lgslem1b 15762 2sqlem2 15788 bj-inf2vnlem2 16292 |
| Copyright terms: Public domain | W3C validator |