| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
| Ref | Expression |
|---|---|
| rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | rexlimi 2617 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: rexlimiva 2619 rexlimivw 2620 rexlimivv 2630 r19.36av 2658 r19.44av 2666 r19.45av 2667 rexn0 3563 uniss2 3887 elres 5004 ssimaex 5653 mpoexw 6312 tfrlem5 6413 tfrlem8 6417 ecoptocl 6722 mapsn 6790 elixpsn 6835 ixpsnf1o 6836 findcard 7000 findcard2 7001 findcard2s 7002 fiintim 7043 prnmaddl 7623 0re 8092 cnegexlem2 8268 0cnALT 8282 bndndx 9314 uzn0 9684 ublbneg 9754 rexanuz2 11377 opnneiid 14711 2lgslem1b 15641 2sqlem2 15667 bj-inf2vnlem2 16045 |
| Copyright terms: Public domain | W3C validator |