ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralim GIF version

Theorem ralim 2589
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.)
Assertion
Ref Expression
ralim (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ralim
StepHypRef Expression
1 df-ral 2513 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
2 ax-2 7 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
32al2imi 1504 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐴𝜓)))
41, 3sylbi 121 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐴𝜓)))
5 df-ral 2513 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
6 df-ral 2513 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
74, 5, 63imtr4g 205 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wcel 2200  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117  df-ral 2513
This theorem is referenced by:  ral2imi  2595  trint  4196  peano2  4686  mpteqb  5724  mptelixpg  6879  lbzbi  9807  r19.29uz  11498  alzdvds  12360
  Copyright terms: Public domain W3C validator