| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralim | GIF version | ||
| Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) |
| Ref | Expression |
|---|---|
| ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
| 2 | ax-2 7 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) → ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓))) | |
| 3 | 2 | al2imi 1504 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
| 4 | 1, 3 | sylbi 121 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
| 5 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 6 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 7 | 4, 5, 6 | 3imtr4g 205 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: ral2imi 2595 trint 4196 peano2 4686 mpteqb 5724 mptelixpg 6879 lbzbi 9807 r19.29uz 11498 alzdvds 12360 |
| Copyright terms: Public domain | W3C validator |