ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ixp GIF version

Theorem ss2ixp 6828
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
ss2ixp (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)

Proof of Theorem ss2ixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ssel 3198 . . . . 5 (𝐵𝐶 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝐶))
21ral2imi 2575 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
32anim2d 337 . . 3 (∀𝑥𝐴 𝐵𝐶 → ((𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) → (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
43ss2abdv 3277 . 2 (∀𝑥𝐴 𝐵𝐶 → {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} ⊆ {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)})
5 df-ixp 6816 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
6 df-ixp 6816 . 2 X𝑥𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)}
74, 5, 63sstr4g 3247 1 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180  {cab 2195  wral 2488  wss 3177   Fn wfn 5289  cfv 5294  Xcixp 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-in 3183  df-ss 3190  df-ixp 6816
This theorem is referenced by:  ixpeq2  6829  prdsvallem  13271
  Copyright terms: Public domain W3C validator