| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > a2d | GIF version | ||
| Description: Deduction distributing an embedded antecedent. (Contributed by NM, 23-Jun-1994.) | 
| Ref | Expression | 
|---|---|
| a2d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| a2d | ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a2d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) | 
| Copyright terms: Public domain | W3C validator |