| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | ralimdaa 2596 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: ralimdv 2598 ralimdvva 2599 f1mpt 5894 isores3 5938 caofrss 6248 caoftrn 6249 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 tfrcl 6508 infidc 7097 exmidomniim 7304 exmidontri2or 7424 caucvgsrlemoffcau 7981 caucvgsrlemoffres 7983 indstr 9784 caucvgre 11487 rexuz3 11496 resqrexlemgt0 11526 resqrexlemglsq 11528 cau3lem 11620 rexanre 11726 rexico 11727 2clim 11807 climcn1 11814 climcn2 11815 subcn2 11817 climsqz 11841 climsqz2 11842 climcvg1nlem 11855 fprodsplitdc 12102 bezoutlemaz 12519 bezoutlembz 12520 bezoutlembi 12521 pcfac 12868 pockthg 12875 infpnlem1 12877 isgrpinv 13582 dfgrp3me 13628 issubg4m 13725 mplsubgfileminv 14658 cncnp 14898 txlm 14947 metequiv2 15164 metcnpi3 15185 rescncf 15249 cncfco 15259 suplociccreex 15292 limcresi 15334 cnplimcim 15335 cnplimclemr 15337 cnlimcim 15339 limccnpcntop 15343 limccoap 15346 2sqlem6 15793 wlkvtxiedgg 16042 bj-charfunbi 16132 nninffeq 16345 tridceq 16383 |
| Copyright terms: Public domain | W3C validator |