| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | ralimdaa 2574 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: ralimdv 2576 ralimdvva 2577 f1mpt 5863 isores3 5907 caofrss 6213 caoftrn 6214 tfrlemibxssdm 6436 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 tfrcl 6473 infidc 7062 exmidomniim 7269 exmidontri2or 7389 caucvgsrlemoffcau 7946 caucvgsrlemoffres 7948 indstr 9749 caucvgre 11407 rexuz3 11416 resqrexlemgt0 11446 resqrexlemglsq 11448 cau3lem 11540 rexanre 11646 rexico 11647 2clim 11727 climcn1 11734 climcn2 11735 subcn2 11737 climsqz 11761 climsqz2 11762 climcvg1nlem 11775 fprodsplitdc 12022 bezoutlemaz 12439 bezoutlembz 12440 bezoutlembi 12441 pcfac 12788 pockthg 12795 infpnlem1 12797 isgrpinv 13501 dfgrp3me 13547 issubg4m 13644 mplsubgfileminv 14577 cncnp 14817 txlm 14866 metequiv2 15083 metcnpi3 15104 rescncf 15168 cncfco 15178 suplociccreex 15211 limcresi 15253 cnplimcim 15254 cnplimclemr 15256 cnlimcim 15258 limccnpcntop 15262 limccoap 15265 2sqlem6 15712 bj-charfunbi 15946 nninffeq 16159 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |