![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 1, 2 | ralimdaa 2543 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-ral 2460 |
This theorem is referenced by: ralimdv 2545 ralimdvva 2546 f1mpt 5772 isores3 5816 caofrss 6107 caoftrn 6108 tfrlemibxssdm 6328 tfr1onlembxssdm 6344 tfrcllembxssdm 6357 tfrcl 6365 exmidomniim 7139 exmidontri2or 7242 caucvgsrlemoffcau 7797 caucvgsrlemoffres 7799 indstr 9593 caucvgre 10990 rexuz3 10999 resqrexlemgt0 11029 resqrexlemglsq 11031 cau3lem 11123 rexanre 11229 rexico 11230 2clim 11309 climcn1 11316 climcn2 11317 subcn2 11319 climsqz 11343 climsqz2 11344 climcvg1nlem 11357 fprodsplitdc 11604 bezoutlemaz 12004 bezoutlembz 12005 bezoutlembi 12006 pcfac 12348 pockthg 12355 infpnlem1 12357 isgrpinv 12926 dfgrp3me 12970 issubg4m 13053 cncnp 13733 txlm 13782 metequiv2 13999 metcnpi3 14020 rescncf 14071 cncfco 14081 suplociccreex 14105 limcresi 14138 cnplimcim 14139 cnplimclemr 14141 cnlimcim 14143 limccnpcntop 14147 limccoap 14150 2sqlem6 14470 bj-charfunbi 14566 nninffeq 14772 tridceq 14807 |
Copyright terms: Public domain | W3C validator |