![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 1, 2 | ralimdaa 2543 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-ral 2460 |
This theorem is referenced by: ralimdv 2545 ralimdvva 2546 f1mpt 5771 isores3 5815 caofrss 6106 caoftrn 6107 tfrlemibxssdm 6327 tfr1onlembxssdm 6343 tfrcllembxssdm 6356 tfrcl 6364 exmidomniim 7138 exmidontri2or 7241 caucvgsrlemoffcau 7796 caucvgsrlemoffres 7798 indstr 9592 caucvgre 10989 rexuz3 10998 resqrexlemgt0 11028 resqrexlemglsq 11030 cau3lem 11122 rexanre 11228 rexico 11229 2clim 11308 climcn1 11315 climcn2 11316 subcn2 11318 climsqz 11342 climsqz2 11343 climcvg1nlem 11356 fprodsplitdc 11603 bezoutlemaz 12003 bezoutlembz 12004 bezoutlembi 12005 pcfac 12347 pockthg 12354 infpnlem1 12356 isgrpinv 12925 dfgrp3me 12969 issubg4m 13051 cncnp 13700 txlm 13749 metequiv2 13966 metcnpi3 13987 rescncf 14038 cncfco 14048 suplociccreex 14072 limcresi 14105 cnplimcim 14106 cnplimclemr 14108 cnlimcim 14110 limccnpcntop 14114 limccoap 14117 2sqlem6 14437 bj-charfunbi 14533 nninffeq 14739 tridceq 14774 |
Copyright terms: Public domain | W3C validator |