Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 1, 2 | ralimdaa 2532 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: ralimdv 2534 ralimdvva 2535 f1mpt 5739 isores3 5783 caofrss 6074 caoftrn 6075 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 tfrcl 6332 exmidomniim 7105 exmidontri2or 7199 caucvgsrlemoffcau 7739 caucvgsrlemoffres 7741 indstr 9531 caucvgre 10923 rexuz3 10932 resqrexlemgt0 10962 resqrexlemglsq 10964 cau3lem 11056 rexanre 11162 rexico 11163 2clim 11242 climcn1 11249 climcn2 11250 subcn2 11252 climsqz 11276 climsqz2 11277 climcvg1nlem 11290 fprodsplitdc 11537 bezoutlemaz 11936 bezoutlembz 11937 bezoutlembi 11938 pcfac 12280 pockthg 12287 infpnlem1 12289 cncnp 12870 txlm 12919 metequiv2 13136 metcnpi3 13157 rescncf 13208 cncfco 13218 suplociccreex 13242 limcresi 13275 cnplimcim 13276 cnplimclemr 13278 cnlimcim 13280 limccnpcntop 13284 limccoap 13287 2sqlem6 13596 bj-charfunbi 13693 nninffeq 13900 tridceq 13935 |
Copyright terms: Public domain | W3C validator |