Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 1, 2 | ralimdaa 2536 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: ralimdv 2538 ralimdvva 2539 f1mpt 5750 isores3 5794 caofrss 6085 caoftrn 6086 tfrlemibxssdm 6306 tfr1onlembxssdm 6322 tfrcllembxssdm 6335 tfrcl 6343 exmidomniim 7117 exmidontri2or 7220 caucvgsrlemoffcau 7760 caucvgsrlemoffres 7762 indstr 9552 caucvgre 10945 rexuz3 10954 resqrexlemgt0 10984 resqrexlemglsq 10986 cau3lem 11078 rexanre 11184 rexico 11185 2clim 11264 climcn1 11271 climcn2 11272 subcn2 11274 climsqz 11298 climsqz2 11299 climcvg1nlem 11312 fprodsplitdc 11559 bezoutlemaz 11958 bezoutlembz 11959 bezoutlembi 11960 pcfac 12302 pockthg 12309 infpnlem1 12311 isgrpinv 12756 cncnp 13024 txlm 13073 metequiv2 13290 metcnpi3 13311 rescncf 13362 cncfco 13372 suplociccreex 13396 limcresi 13429 cnplimcim 13430 cnplimclemr 13432 cnlimcim 13434 limccnpcntop 13438 limccoap 13441 2sqlem6 13750 bj-charfunbi 13846 nninffeq 14053 tridceq 14088 |
Copyright terms: Public domain | W3C validator |