| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | ralimdaa 2572 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralimdv 2574 ralimdvva 2575 f1mpt 5840 isores3 5884 caofrss 6190 caoftrn 6191 tfrlemibxssdm 6413 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 tfrcl 6450 infidc 7036 exmidomniim 7243 exmidontri2or 7355 caucvgsrlemoffcau 7911 caucvgsrlemoffres 7913 indstr 9714 caucvgre 11292 rexuz3 11301 resqrexlemgt0 11331 resqrexlemglsq 11333 cau3lem 11425 rexanre 11531 rexico 11532 2clim 11612 climcn1 11619 climcn2 11620 subcn2 11622 climsqz 11646 climsqz2 11647 climcvg1nlem 11660 fprodsplitdc 11907 bezoutlemaz 12324 bezoutlembz 12325 bezoutlembi 12326 pcfac 12673 pockthg 12680 infpnlem1 12682 isgrpinv 13386 dfgrp3me 13432 issubg4m 13529 mplsubgfileminv 14462 cncnp 14702 txlm 14751 metequiv2 14968 metcnpi3 14989 rescncf 15053 cncfco 15063 suplociccreex 15096 limcresi 15138 cnplimcim 15139 cnplimclemr 15141 cnlimcim 15143 limccnpcntop 15147 limccoap 15150 2sqlem6 15597 bj-charfunbi 15747 nninffeq 15957 tridceq 15995 |
| Copyright terms: Public domain | W3C validator |