Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 1, 2 | ralimdaa 2541 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-ral 2458 |
This theorem is referenced by: ralimdv 2543 ralimdvva 2544 f1mpt 5762 isores3 5806 caofrss 6097 caoftrn 6098 tfrlemibxssdm 6318 tfr1onlembxssdm 6334 tfrcllembxssdm 6347 tfrcl 6355 exmidomniim 7129 exmidontri2or 7232 caucvgsrlemoffcau 7772 caucvgsrlemoffres 7774 indstr 9564 caucvgre 10956 rexuz3 10965 resqrexlemgt0 10995 resqrexlemglsq 10997 cau3lem 11089 rexanre 11195 rexico 11196 2clim 11275 climcn1 11282 climcn2 11283 subcn2 11285 climsqz 11309 climsqz2 11310 climcvg1nlem 11323 fprodsplitdc 11570 bezoutlemaz 11969 bezoutlembz 11970 bezoutlembi 11971 pcfac 12313 pockthg 12320 infpnlem1 12322 isgrpinv 12786 dfgrp3me 12829 cncnp 13299 txlm 13348 metequiv2 13565 metcnpi3 13586 rescncf 13637 cncfco 13647 suplociccreex 13671 limcresi 13704 cnplimcim 13705 cnplimclemr 13707 cnlimcim 13709 limccnpcntop 13713 limccoap 13716 2sqlem6 14025 bj-charfunbi 14121 nninffeq 14328 tridceq 14363 |
Copyright terms: Public domain | W3C validator |