![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 1, 2 | ralimdaa 2560 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: ralimdv 2562 ralimdvva 2563 f1mpt 5814 isores3 5858 caofrss 6157 caoftrn 6158 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 tfrcl 6417 infidc 6993 exmidomniim 7200 exmidontri2or 7303 caucvgsrlemoffcau 7858 caucvgsrlemoffres 7860 indstr 9658 caucvgre 11125 rexuz3 11134 resqrexlemgt0 11164 resqrexlemglsq 11166 cau3lem 11258 rexanre 11364 rexico 11365 2clim 11444 climcn1 11451 climcn2 11452 subcn2 11454 climsqz 11478 climsqz2 11479 climcvg1nlem 11492 fprodsplitdc 11739 bezoutlemaz 12140 bezoutlembz 12141 bezoutlembi 12142 pcfac 12488 pockthg 12495 infpnlem1 12497 isgrpinv 13126 dfgrp3me 13172 issubg4m 13263 cncnp 14398 txlm 14447 metequiv2 14664 metcnpi3 14685 rescncf 14736 cncfco 14746 suplociccreex 14778 limcresi 14820 cnplimcim 14821 cnplimclemr 14823 cnlimcim 14825 limccnpcntop 14829 limccoap 14832 2sqlem6 15207 bj-charfunbi 15303 nninffeq 15510 tridceq 15546 |
Copyright terms: Public domain | W3C validator |