| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | ralimdaa 2563 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralimdv 2565 ralimdvva 2566 f1mpt 5821 isores3 5865 caofrss 6171 caoftrn 6172 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 tfrcl 6431 infidc 7009 exmidomniim 7216 exmidontri2or 7328 caucvgsrlemoffcau 7884 caucvgsrlemoffres 7886 indstr 9686 caucvgre 11165 rexuz3 11174 resqrexlemgt0 11204 resqrexlemglsq 11206 cau3lem 11298 rexanre 11404 rexico 11405 2clim 11485 climcn1 11492 climcn2 11493 subcn2 11495 climsqz 11519 climsqz2 11520 climcvg1nlem 11533 fprodsplitdc 11780 bezoutlemaz 12197 bezoutlembz 12198 bezoutlembi 12199 pcfac 12546 pockthg 12553 infpnlem1 12555 isgrpinv 13258 dfgrp3me 13304 issubg4m 13401 mplsubgfileminv 14334 cncnp 14574 txlm 14623 metequiv2 14840 metcnpi3 14861 rescncf 14925 cncfco 14935 suplociccreex 14968 limcresi 15010 cnplimcim 15011 cnplimclemr 15013 cnlimcim 15015 limccnpcntop 15019 limccoap 15022 2sqlem6 15469 bj-charfunbi 15565 nninffeq 15775 tridceq 15813 |
| Copyright terms: Public domain | W3C validator |