| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdva | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| ralimdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralimdva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | ralimdaa 2571 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 |
| This theorem is referenced by: ralimdv 2573 ralimdvva 2574 f1mpt 5839 isores3 5883 caofrss 6189 caoftrn 6190 tfrlemibxssdm 6412 tfr1onlembxssdm 6428 tfrcllembxssdm 6441 tfrcl 6449 infidc 7035 exmidomniim 7242 exmidontri2or 7354 caucvgsrlemoffcau 7910 caucvgsrlemoffres 7912 indstr 9713 caucvgre 11263 rexuz3 11272 resqrexlemgt0 11302 resqrexlemglsq 11304 cau3lem 11396 rexanre 11502 rexico 11503 2clim 11583 climcn1 11590 climcn2 11591 subcn2 11593 climsqz 11617 climsqz2 11618 climcvg1nlem 11631 fprodsplitdc 11878 bezoutlemaz 12295 bezoutlembz 12296 bezoutlembi 12297 pcfac 12644 pockthg 12651 infpnlem1 12653 isgrpinv 13357 dfgrp3me 13403 issubg4m 13500 mplsubgfileminv 14433 cncnp 14673 txlm 14722 metequiv2 14939 metcnpi3 14960 rescncf 15024 cncfco 15034 suplociccreex 15067 limcresi 15109 cnplimcim 15110 cnplimclemr 15112 cnlimcim 15114 limccnpcntop 15118 limccoap 15121 2sqlem6 15568 bj-charfunbi 15709 nninffeq 15919 tridceq 15957 |
| Copyright terms: Public domain | W3C validator |