ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkvnex GIF version

Theorem ismkvnex 7131
Description: The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
Assertion
Ref Expression
ismkvnex (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉,𝑥

Proof of Theorem ismkvnex
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5495 . . . . . . . . 9 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → (𝑔𝑥) = ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥))
21eqeq1d 2179 . . . . . . . 8 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → ((𝑔𝑥) = 1o ↔ ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o))
32ralbidv 2470 . . . . . . 7 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → (∀𝑥𝐴 (𝑔𝑥) = 1o ↔ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o))
43notbid 662 . . . . . 6 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → (¬ ∀𝑥𝐴 (𝑔𝑥) = 1o ↔ ¬ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o))
51eqeq1d 2179 . . . . . . 7 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → ((𝑔𝑥) = ∅ ↔ ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅))
65rexbidv 2471 . . . . . 6 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → (∃𝑥𝐴 (𝑔𝑥) = ∅ ↔ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅))
74, 6imbi12d 233 . . . . 5 (𝑔 = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) → ((¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅) ↔ (¬ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o → ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅)))
8 elex 2741 . . . . . . 7 (𝐴 ∈ Markov → 𝐴 ∈ V)
9 ismkvmap 7130 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∈ Markov ↔ ∀𝑔 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅)))
109biimpd 143 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ Markov → ∀𝑔 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅)))
118, 10mpcom 36 . . . . . 6 (𝐴 ∈ Markov → ∀𝑔 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅))
1211adantr 274 . . . . 5 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → ∀𝑔 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅))
13 elmapi 6648 . . . . . . . . . 10 (𝑓 ∈ (2o𝑚 𝐴) → 𝑓:𝐴⟶2o)
1413adantl 275 . . . . . . . . 9 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → 𝑓:𝐴⟶2o)
1514ffvelrnda 5631 . . . . . . . 8 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑧𝐴) → (𝑓𝑧) ∈ 2o)
16 2oconcl 6418 . . . . . . . 8 ((𝑓𝑧) ∈ 2o → (1o ∖ (𝑓𝑧)) ∈ 2o)
1715, 16syl 14 . . . . . . 7 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑧𝐴) → (1o ∖ (𝑓𝑧)) ∈ 2o)
1817fmpttd 5651 . . . . . 6 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))):𝐴⟶2o)
19 2onn 6500 . . . . . . . 8 2o ∈ ω
2019a1i 9 . . . . . . 7 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → 2o ∈ ω)
21 simpl 108 . . . . . . 7 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → 𝐴 ∈ Markov)
2220, 21elmapd 6640 . . . . . 6 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) ∈ (2o𝑚 𝐴) ↔ (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))):𝐴⟶2o))
2318, 22mpbird 166 . . . . 5 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) ∈ (2o𝑚 𝐴))
247, 12, 23rspcdva 2839 . . . 4 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (¬ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o → ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅))
25 eqid 2170 . . . . . . . . . 10 (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧))) = (𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))
26 fveq2 5496 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑓𝑧) = (𝑓𝑥))
2726difeq2d 3245 . . . . . . . . . 10 (𝑧 = 𝑥 → (1o ∖ (𝑓𝑧)) = (1o ∖ (𝑓𝑥)))
28 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
29 1oex 6403 . . . . . . . . . . 11 1o ∈ V
30 difexg 4130 . . . . . . . . . . 11 (1o ∈ V → (1o ∖ (𝑓𝑥)) ∈ V)
3129, 30mp1i 10 . . . . . . . . . 10 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (1o ∖ (𝑓𝑥)) ∈ V)
3225, 27, 28, 31fvmptd3 5589 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = (1o ∖ (𝑓𝑥)))
3332eqeq1d 2179 . . . . . . . 8 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o ↔ (1o ∖ (𝑓𝑥)) = 1o))
34 difeq2 3239 . . . . . . . . . . . 12 ((𝑓𝑥) = ∅ → (1o ∖ (𝑓𝑥)) = (1o ∖ ∅))
35 dif0 3485 . . . . . . . . . . . 12 (1o ∖ ∅) = 1o
3634, 35eqtrdi 2219 . . . . . . . . . . 11 ((𝑓𝑥) = ∅ → (1o ∖ (𝑓𝑥)) = 1o)
3736adantl 275 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = ∅) → (1o ∖ (𝑓𝑥)) = 1o)
38 1n0 6411 . . . . . . . . . . . . 13 1o ≠ ∅
3938nesymi 2386 . . . . . . . . . . . 12 ¬ ∅ = 1o
40 eqeq1 2177 . . . . . . . . . . . 12 ((𝑓𝑥) = ∅ → ((𝑓𝑥) = 1o ↔ ∅ = 1o))
4139, 40mtbiri 670 . . . . . . . . . . 11 ((𝑓𝑥) = ∅ → ¬ (𝑓𝑥) = 1o)
4241adantl 275 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = ∅) → ¬ (𝑓𝑥) = 1o)
4337, 422thd 174 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = ∅) → ((1o ∖ (𝑓𝑥)) = 1o ↔ ¬ (𝑓𝑥) = 1o))
44 difid 3483 . . . . . . . . . . . . . 14 (1o ∖ 1o) = ∅
4544eqeq1i 2178 . . . . . . . . . . . . 13 ((1o ∖ 1o) = 1o ↔ ∅ = 1o)
4639, 45mtbir 666 . . . . . . . . . . . 12 ¬ (1o ∖ 1o) = 1o
47 difeq2 3239 . . . . . . . . . . . . 13 ((𝑓𝑥) = 1o → (1o ∖ (𝑓𝑥)) = (1o ∖ 1o))
4847eqeq1d 2179 . . . . . . . . . . . 12 ((𝑓𝑥) = 1o → ((1o ∖ (𝑓𝑥)) = 1o ↔ (1o ∖ 1o) = 1o))
4946, 48mtbiri 670 . . . . . . . . . . 11 ((𝑓𝑥) = 1o → ¬ (1o ∖ (𝑓𝑥)) = 1o)
5049adantl 275 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = 1o) → ¬ (1o ∖ (𝑓𝑥)) = 1o)
51 notnot 624 . . . . . . . . . . 11 ((𝑓𝑥) = 1o → ¬ ¬ (𝑓𝑥) = 1o)
5251adantl 275 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = 1o) → ¬ ¬ (𝑓𝑥) = 1o)
5350, 522falsed 697 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = 1o) → ((1o ∖ (𝑓𝑥)) = 1o ↔ ¬ (𝑓𝑥) = 1o))
5414ffvelrnda 5631 . . . . . . . . . . 11 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ 2o)
55 df2o3 6409 . . . . . . . . . . 11 2o = {∅, 1o}
5654, 55eleqtrdi 2263 . . . . . . . . . 10 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ {∅, 1o})
57 elpri 3606 . . . . . . . . . 10 ((𝑓𝑥) ∈ {∅, 1o} → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
5856, 57syl 14 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) = 1o))
5943, 53, 58mpjaodan 793 . . . . . . . 8 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((1o ∖ (𝑓𝑥)) = 1o ↔ ¬ (𝑓𝑥) = 1o))
6033, 59bitrd 187 . . . . . . 7 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o ↔ ¬ (𝑓𝑥) = 1o))
6160ralbidva 2466 . . . . . 6 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o ↔ ∀𝑥𝐴 ¬ (𝑓𝑥) = 1o))
6261notbid 662 . . . . 5 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (¬ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥𝐴 ¬ (𝑓𝑥) = 1o))
63 ralnex 2458 . . . . . 6 (∀𝑥𝐴 ¬ (𝑓𝑥) = 1o ↔ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o)
6463notbii 663 . . . . 5 (¬ ∀𝑥𝐴 ¬ (𝑓𝑥) = 1o ↔ ¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o)
6562, 64bitrdi 195 . . . 4 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (¬ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = 1o ↔ ¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o))
6632eqeq1d 2179 . . . . . 6 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅ ↔ (1o ∖ (𝑓𝑥)) = ∅))
6735eqeq1i 2178 . . . . . . . . . . 11 ((1o ∖ ∅) = ∅ ↔ 1o = ∅)
6838, 67nemtbir 2429 . . . . . . . . . 10 ¬ (1o ∖ ∅) = ∅
6934eqeq1d 2179 . . . . . . . . . 10 ((𝑓𝑥) = ∅ → ((1o ∖ (𝑓𝑥)) = ∅ ↔ (1o ∖ ∅) = ∅))
7068, 69mtbiri 670 . . . . . . . . 9 ((𝑓𝑥) = ∅ → ¬ (1o ∖ (𝑓𝑥)) = ∅)
7170adantl 275 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = ∅) → ¬ (1o ∖ (𝑓𝑥)) = ∅)
7271, 422falsed 697 . . . . . . 7 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = ∅) → ((1o ∖ (𝑓𝑥)) = ∅ ↔ (𝑓𝑥) = 1o))
7347, 44eqtrdi 2219 . . . . . . . . 9 ((𝑓𝑥) = 1o → (1o ∖ (𝑓𝑥)) = ∅)
7473adantl 275 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = 1o) → (1o ∖ (𝑓𝑥)) = ∅)
75 simpr 109 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = 1o) → (𝑓𝑥) = 1o)
7674, 752thd 174 . . . . . . 7 ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑓𝑥) = 1o) → ((1o ∖ (𝑓𝑥)) = ∅ ↔ (𝑓𝑥) = 1o))
7772, 76, 58mpjaodan 793 . . . . . 6 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((1o ∖ (𝑓𝑥)) = ∅ ↔ (𝑓𝑥) = 1o))
7866, 77bitrd 187 . . . . 5 (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅ ↔ (𝑓𝑥) = 1o))
7978rexbidva 2467 . . . 4 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑓𝑧)))‘𝑥) = ∅ ↔ ∃𝑥𝐴 (𝑓𝑥) = 1o))
8024, 65, 793imtr3d 201 . . 3 ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o𝑚 𝐴)) → (¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o))
8180ralrimiva 2543 . 2 (𝐴 ∈ Markov → ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o))
82 elex 2741 . . . . 5 (𝐴𝑉𝐴 ∈ V)
8382adantr 274 . . . 4 ((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) → 𝐴 ∈ V)
84 fveq1 5495 . . . . . . . . . . . 12 (𝑓 = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥))
8584eqeq1d 2179 . . . . . . . . . . 11 (𝑓 = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) → ((𝑓𝑥) = 1o ↔ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o))
8685rexbidv 2471 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) → (∃𝑥𝐴 (𝑓𝑥) = 1o ↔ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o))
8786notbid 662 . . . . . . . . 9 (𝑓 = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) → (¬ ∃𝑥𝐴 (𝑓𝑥) = 1o ↔ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o))
8887notbid 662 . . . . . . . 8 (𝑓 = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) → (¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o ↔ ¬ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o))
8988, 86imbi12d 233 . . . . . . 7 (𝑓 = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) → ((¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o) ↔ (¬ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o → ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o)))
90 simplr 525 . . . . . . 7 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o))
91 elmapi 6648 . . . . . . . . . . . 12 (𝑔 ∈ (2o𝑚 𝐴) → 𝑔:𝐴⟶2o)
9291adantl 275 . . . . . . . . . . 11 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → 𝑔:𝐴⟶2o)
9392ffvelrnda 5631 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑧𝐴) → (𝑔𝑧) ∈ 2o)
94 2oconcl 6418 . . . . . . . . . 10 ((𝑔𝑧) ∈ 2o → (1o ∖ (𝑔𝑧)) ∈ 2o)
9593, 94syl 14 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑧𝐴) → (1o ∖ (𝑔𝑧)) ∈ 2o)
9695fmpttd 5651 . . . . . . . 8 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))):𝐴⟶2o)
9719a1i 9 . . . . . . . . 9 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → 2o ∈ ω)
98 simpll 524 . . . . . . . . 9 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → 𝐴𝑉)
9997, 98elmapd 6640 . . . . . . . 8 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) ∈ (2o𝑚 𝐴) ↔ (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))):𝐴⟶2o))
10096, 99mpbird 166 . . . . . . 7 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) ∈ (2o𝑚 𝐴))
10189, 90, 100rspcdva 2839 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (¬ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o → ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o))
102 ralnex 2458 . . . . . . . 8 (∀𝑥𝐴 ¬ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o)
103102notbii 663 . . . . . . 7 (¬ ∀𝑥𝐴 ¬ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ¬ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o)
104 nfv 1521 . . . . . . . . . . 11 𝑥 𝐴𝑉
105 nfcv 2312 . . . . . . . . . . . 12 𝑥(2o𝑚 𝐴)
106 nfre1 2513 . . . . . . . . . . . . . . 15 𝑥𝑥𝐴 (𝑓𝑥) = 1o
107106nfn 1651 . . . . . . . . . . . . . 14 𝑥 ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o
108107nfn 1651 . . . . . . . . . . . . 13 𝑥 ¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o
109108, 106nfim 1565 . . . . . . . . . . . 12 𝑥(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)
110105, 109nfralxy 2508 . . . . . . . . . . 11 𝑥𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)
111104, 110nfan 1558 . . . . . . . . . 10 𝑥(𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o))
112 nfv 1521 . . . . . . . . . 10 𝑥 𝑔 ∈ (2o𝑚 𝐴)
113111, 112nfan 1558 . . . . . . . . 9 𝑥((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴))
114 eqid 2170 . . . . . . . . . . . . 13 (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧))) = (𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))
115 fveq2 5496 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑔𝑧) = (𝑔𝑥))
116115difeq2d 3245 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (1o ∖ (𝑔𝑧)) = (1o ∖ (𝑔𝑥)))
117 simpr 109 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
118 difexg 4130 . . . . . . . . . . . . . 14 (1o ∈ V → (1o ∖ (𝑔𝑥)) ∈ V)
11929, 118mp1i 10 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (1o ∖ (𝑔𝑥)) ∈ V)
120114, 116, 117, 119fvmptd3 5589 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = (1o ∖ (𝑔𝑥)))
121120eqeq1d 2179 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ (1o ∖ (𝑔𝑥)) = 1o))
122121notbid 662 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (¬ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ¬ (1o ∖ (𝑔𝑥)) = 1o))
123 difeq2 3239 . . . . . . . . . . . . . . 15 ((𝑔𝑥) = ∅ → (1o ∖ (𝑔𝑥)) = (1o ∖ ∅))
124123, 35eqtrdi 2219 . . . . . . . . . . . . . 14 ((𝑔𝑥) = ∅ → (1o ∖ (𝑔𝑥)) = 1o)
125124adantl 275 . . . . . . . . . . . . 13 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = ∅) → (1o ∖ (𝑔𝑥)) = 1o)
126125notnotd 625 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = ∅) → ¬ ¬ (1o ∖ (𝑔𝑥)) = 1o)
127 eqeq1 2177 . . . . . . . . . . . . . 14 ((𝑔𝑥) = ∅ → ((𝑔𝑥) = 1o ↔ ∅ = 1o))
12839, 127mtbiri 670 . . . . . . . . . . . . 13 ((𝑔𝑥) = ∅ → ¬ (𝑔𝑥) = 1o)
129128adantl 275 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = ∅) → ¬ (𝑔𝑥) = 1o)
130126, 1292falsed 697 . . . . . . . . . . 11 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = ∅) → (¬ (1o ∖ (𝑔𝑥)) = 1o ↔ (𝑔𝑥) = 1o))
131 difeq2 3239 . . . . . . . . . . . . . . 15 ((𝑔𝑥) = 1o → (1o ∖ (𝑔𝑥)) = (1o ∖ 1o))
132131eqeq1d 2179 . . . . . . . . . . . . . 14 ((𝑔𝑥) = 1o → ((1o ∖ (𝑔𝑥)) = 1o ↔ (1o ∖ 1o) = 1o))
13346, 132mtbiri 670 . . . . . . . . . . . . 13 ((𝑔𝑥) = 1o → ¬ (1o ∖ (𝑔𝑥)) = 1o)
134133adantl 275 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = 1o) → ¬ (1o ∖ (𝑔𝑥)) = 1o)
135 simpr 109 . . . . . . . . . . . 12 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = 1o) → (𝑔𝑥) = 1o)
136134, 1352thd 174 . . . . . . . . . . 11 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = 1o) → (¬ (1o ∖ (𝑔𝑥)) = 1o ↔ (𝑔𝑥) = 1o))
13791ad2antlr 486 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑔:𝐴⟶2o)
138137, 117ffvelrnd 5632 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 2o)
139138, 55eleqtrdi 2263 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ {∅, 1o})
140 elpri 3606 . . . . . . . . . . . 12 ((𝑔𝑥) ∈ {∅, 1o} → ((𝑔𝑥) = ∅ ∨ (𝑔𝑥) = 1o))
141139, 140syl 14 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑔𝑥) = ∅ ∨ (𝑔𝑥) = 1o))
142130, 136, 141mpjaodan 793 . . . . . . . . . 10 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (¬ (1o ∖ (𝑔𝑥)) = 1o ↔ (𝑔𝑥) = 1o))
143122, 142bitrd 187 . . . . . . . . 9 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (¬ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ (𝑔𝑥) = 1o))
144113, 143ralbida 2464 . . . . . . . 8 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (∀𝑥𝐴 ¬ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ∀𝑥𝐴 (𝑔𝑥) = 1o))
145144notbid 662 . . . . . . 7 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (¬ ∀𝑥𝐴 ¬ ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥𝐴 (𝑔𝑥) = 1o))
146103, 145bitr3id 193 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (¬ ¬ ∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥𝐴 (𝑔𝑥) = 1o))
147 simpr 109 . . . . . . . . . 10 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = ∅) → (𝑔𝑥) = ∅)
148125, 1472thd 174 . . . . . . . . 9 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = ∅) → ((1o ∖ (𝑔𝑥)) = 1o ↔ (𝑔𝑥) = ∅))
149128, 135nsyl3 621 . . . . . . . . . 10 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = 1o) → ¬ (𝑔𝑥) = ∅)
150134, 1492falsed 697 . . . . . . . . 9 (((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) ∧ (𝑔𝑥) = 1o) → ((1o ∖ (𝑔𝑥)) = 1o ↔ (𝑔𝑥) = ∅))
151148, 150, 141mpjaodan 793 . . . . . . . 8 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → ((1o ∖ (𝑔𝑥)) = 1o ↔ (𝑔𝑥) = ∅))
152121, 151bitrd 187 . . . . . . 7 ((((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ (𝑔𝑥) = ∅))
153113, 152rexbida 2465 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (∃𝑥𝐴 ((𝑧𝐴 ↦ (1o ∖ (𝑔𝑧)))‘𝑥) = 1o ↔ ∃𝑥𝐴 (𝑔𝑥) = ∅))
154101, 146, 1533imtr3d 201 . . . . 5 (((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) ∧ 𝑔 ∈ (2o𝑚 𝐴)) → (¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅))
155154ralrimiva 2543 . . . 4 ((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) → ∀𝑔 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅))
1569biimprd 157 . . . 4 (𝐴 ∈ V → (∀𝑔 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑔𝑥) = 1o → ∃𝑥𝐴 (𝑔𝑥) = ∅) → 𝐴 ∈ Markov))
15783, 155, 156sylc 62 . . 3 ((𝐴𝑉 ∧ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)) → 𝐴 ∈ Markov)
158157ex 114 . 2 (𝐴𝑉 → (∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o) → 𝐴 ∈ Markov))
15981, 158impbid2 142 1 (𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  cdif 3118  c0 3414  {cpr 3584  cmpt 4050  ωcom 4574  wf 5194  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  Markovcmarkov 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-markov 7128
This theorem is referenced by:  subctctexmid  14034
  Copyright terms: Public domain W3C validator