Step | Hyp | Ref
| Expression |
1 | | fveq1 5485 |
. . . . . . . . 9
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (𝑔‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥)) |
2 | 1 | eqeq1d 2174 |
. . . . . . . 8
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → ((𝑔‘𝑥) = 1o ↔ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o)) |
3 | 2 | ralbidv 2466 |
. . . . . . 7
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o)) |
4 | 3 | notbid 657 |
. . . . . 6
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o)) |
5 | 1 | eqeq1d 2174 |
. . . . . . 7
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → ((𝑔‘𝑥) = ∅ ↔ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅)) |
6 | 5 | rexbidv 2467 |
. . . . . 6
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅)) |
7 | 4, 6 | imbi12d 233 |
. . . . 5
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → ((¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅) ↔ (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅))) |
8 | | elex 2737 |
. . . . . . 7
⊢ (𝐴 ∈ Markov → 𝐴 ∈ V) |
9 | | ismkvmap 7118 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 ∈ Markov ↔
∀𝑔 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅))) |
10 | 9 | biimpd 143 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 ∈ Markov →
∀𝑔 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅))) |
11 | 8, 10 | mpcom 36 |
. . . . . 6
⊢ (𝐴 ∈ Markov →
∀𝑔 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) |
12 | 11 | adantr 274 |
. . . . 5
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) |
13 | | elmapi 6636 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (2o
↑𝑚 𝐴) → 𝑓:𝐴⟶2o) |
14 | 13 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → 𝑓:𝐴⟶2o) |
15 | 14 | ffvelrnda 5620 |
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑓‘𝑧) ∈ 2o) |
16 | | 2oconcl 6407 |
. . . . . . . 8
⊢ ((𝑓‘𝑧) ∈ 2o → (1o
∖ (𝑓‘𝑧)) ∈
2o) |
17 | 15, 16 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (1o ∖ (𝑓‘𝑧)) ∈ 2o) |
18 | 17 | fmpttd 5640 |
. . . . . 6
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))):𝐴⟶2o) |
19 | | 2onn 6489 |
. . . . . . . 8
⊢
2o ∈ ω |
20 | 19 | a1i 9 |
. . . . . . 7
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → 2o ∈
ω) |
21 | | simpl 108 |
. . . . . . 7
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → 𝐴 ∈ Markov) |
22 | 20, 21 | elmapd 6628 |
. . . . . 6
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) ∈ (2o
↑𝑚 𝐴) ↔ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))):𝐴⟶2o)) |
23 | 18, 22 | mpbird 166 |
. . . . 5
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) ∈ (2o
↑𝑚 𝐴)) |
24 | 7, 12, 23 | rspcdva 2835 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅)) |
25 | | eqid 2165 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) |
26 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑓‘𝑧) = (𝑓‘𝑥)) |
27 | 26 | difeq2d 3240 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (1o ∖ (𝑓‘𝑧)) = (1o ∖ (𝑓‘𝑥))) |
28 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
29 | | 1oex 6392 |
. . . . . . . . . . 11
⊢
1o ∈ V |
30 | | difexg 4123 |
. . . . . . . . . . 11
⊢
(1o ∈ V → (1o ∖ (𝑓‘𝑥)) ∈ V) |
31 | 29, 30 | mp1i 10 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (1o ∖ (𝑓‘𝑥)) ∈ V) |
32 | 25, 27, 28, 31 | fvmptd3 5579 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = (1o ∖ (𝑓‘𝑥))) |
33 | 32 | eqeq1d 2174 |
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ (1o
∖ (𝑓‘𝑥)) =
1o)) |
34 | | difeq2 3234 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) = ∅ → (1o ∖
(𝑓‘𝑥)) = (1o ∖
∅)) |
35 | | dif0 3479 |
. . . . . . . . . . . 12
⊢
(1o ∖ ∅) = 1o |
36 | 34, 35 | eqtrdi 2215 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = ∅ → (1o ∖
(𝑓‘𝑥)) = 1o) |
37 | 36 | adantl 275 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → (1o ∖
(𝑓‘𝑥)) = 1o) |
38 | | 1n0 6400 |
. . . . . . . . . . . . 13
⊢
1o ≠ ∅ |
39 | 38 | nesymi 2382 |
. . . . . . . . . . . 12
⊢ ¬
∅ = 1o |
40 | | eqeq1 2172 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) = ∅ → ((𝑓‘𝑥) = 1o ↔ ∅ =
1o)) |
41 | 39, 40 | mtbiri 665 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = ∅ → ¬ (𝑓‘𝑥) = 1o) |
42 | 41 | adantl 275 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ¬ (𝑓‘𝑥) = 1o) |
43 | 37, 42 | 2thd 174 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ((1o ∖
(𝑓‘𝑥)) = 1o ↔ ¬ (𝑓‘𝑥) = 1o)) |
44 | | difid 3477 |
. . . . . . . . . . . . . 14
⊢
(1o ∖ 1o) = ∅ |
45 | 44 | eqeq1i 2173 |
. . . . . . . . . . . . 13
⊢
((1o ∖ 1o) = 1o ↔ ∅ =
1o) |
46 | 39, 45 | mtbir 661 |
. . . . . . . . . . . 12
⊢ ¬
(1o ∖ 1o) = 1o |
47 | | difeq2 3234 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑥) = 1o → (1o
∖ (𝑓‘𝑥)) = (1o ∖
1o)) |
48 | 47 | eqeq1d 2174 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) = 1o → ((1o
∖ (𝑓‘𝑥)) = 1o ↔
(1o ∖ 1o) = 1o)) |
49 | 46, 48 | mtbiri 665 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = 1o → ¬ (1o
∖ (𝑓‘𝑥)) =
1o) |
50 | 49 | adantl 275 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ¬
(1o ∖ (𝑓‘𝑥)) = 1o) |
51 | | notnot 619 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = 1o → ¬ ¬ (𝑓‘𝑥) = 1o) |
52 | 51 | adantl 275 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ¬ ¬ (𝑓‘𝑥) = 1o) |
53 | 50, 52 | 2falsed 692 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ((1o
∖ (𝑓‘𝑥)) = 1o ↔ ¬
(𝑓‘𝑥) = 1o)) |
54 | 14 | ffvelrnda 5620 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 2o) |
55 | | df2o3 6398 |
. . . . . . . . . . 11
⊢
2o = {∅, 1o} |
56 | 54, 55 | eleqtrdi 2259 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ {∅,
1o}) |
57 | | elpri 3599 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ {∅, 1o} →
((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) = 1o)) |
58 | 56, 57 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) = 1o)) |
59 | 43, 53, 58 | mpjaodan 788 |
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1o ∖ (𝑓‘𝑥)) = 1o ↔ ¬ (𝑓‘𝑥) = 1o)) |
60 | 33, 59 | bitrd 187 |
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ¬ (𝑓‘𝑥) = 1o)) |
61 | 60 | ralbidva 2462 |
. . . . . 6
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o)) |
62 | 61 | notbid 657 |
. . . . 5
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o)) |
63 | | ralnex 2454 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ¬ (𝑓‘𝑥) = 1o ↔ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
64 | 63 | notbii 658 |
. . . . 5
⊢ (¬
∀𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
65 | 62, 64 | bitrdi 195 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
66 | 32 | eqeq1d 2174 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅ ↔ (1o ∖
(𝑓‘𝑥)) = ∅)) |
67 | 35 | eqeq1i 2173 |
. . . . . . . . . . 11
⊢
((1o ∖ ∅) = ∅ ↔ 1o =
∅) |
68 | 38, 67 | nemtbir 2425 |
. . . . . . . . . 10
⊢ ¬
(1o ∖ ∅) = ∅ |
69 | 34 | eqeq1d 2174 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) = ∅ → ((1o ∖
(𝑓‘𝑥)) = ∅ ↔ (1o ∖
∅) = ∅)) |
70 | 68, 69 | mtbiri 665 |
. . . . . . . . 9
⊢ ((𝑓‘𝑥) = ∅ → ¬ (1o
∖ (𝑓‘𝑥)) = ∅) |
71 | 70 | adantl 275 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ¬ (1o
∖ (𝑓‘𝑥)) = ∅) |
72 | 71, 42 | 2falsed 692 |
. . . . . . 7
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ((1o ∖
(𝑓‘𝑥)) = ∅ ↔ (𝑓‘𝑥) = 1o)) |
73 | 47, 44 | eqtrdi 2215 |
. . . . . . . . 9
⊢ ((𝑓‘𝑥) = 1o → (1o
∖ (𝑓‘𝑥)) = ∅) |
74 | 73 | adantl 275 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → (1o
∖ (𝑓‘𝑥)) = ∅) |
75 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → (𝑓‘𝑥) = 1o) |
76 | 74, 75 | 2thd 174 |
. . . . . . 7
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ((1o
∖ (𝑓‘𝑥)) = ∅ ↔ (𝑓‘𝑥) = 1o)) |
77 | 72, 76, 58 | mpjaodan 788 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1o ∖ (𝑓‘𝑥)) = ∅ ↔ (𝑓‘𝑥) = 1o)) |
78 | 66, 77 | bitrd 187 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅ ↔ (𝑓‘𝑥) = 1o)) |
79 | 78 | rexbidva 2463 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
80 | 24, 65, 79 | 3imtr3d 201 |
. . 3
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
81 | 80 | ralrimiva 2539 |
. 2
⊢ (𝐴 ∈ Markov →
∀𝑓 ∈
(2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
82 | | elex 2737 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
83 | 82 | adantr 274 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → 𝐴 ∈ V) |
84 | | fveq1 5485 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (𝑓‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥)) |
85 | 84 | eqeq1d 2174 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → ((𝑓‘𝑥) = 1o ↔ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) |
86 | 85 | rexbidv 2467 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) |
87 | 86 | notbid 657 |
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) |
88 | 87 | notbid 657 |
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) |
89 | 88, 86 | imbi12d 233 |
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → ((¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (¬ ¬
∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o))) |
90 | | simplr 520 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
91 | | elmapi 6636 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (2o
↑𝑚 𝐴) → 𝑔:𝐴⟶2o) |
92 | 91 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝑔:𝐴⟶2o) |
93 | 92 | ffvelrnda 5620 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑔‘𝑧) ∈ 2o) |
94 | | 2oconcl 6407 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑧) ∈ 2o → (1o
∖ (𝑔‘𝑧)) ∈
2o) |
95 | 93, 94 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (1o ∖ (𝑔‘𝑧)) ∈ 2o) |
96 | 95 | fmpttd 5640 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))):𝐴⟶2o) |
97 | 19 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 2o ∈
ω) |
98 | | simpll 519 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝐴 ∈ 𝑉) |
99 | 97, 98 | elmapd 6628 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) ∈ (2o
↑𝑚 𝐴) ↔ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))):𝐴⟶2o)) |
100 | 96, 99 | mpbird 166 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) ∈ (2o
↑𝑚 𝐴)) |
101 | 89, 90, 100 | rspcdva 2835 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) |
102 | | ralnex 2454 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o) |
103 | 102 | notbii 658 |
. . . . . . 7
⊢ (¬
∀𝑥 ∈ 𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o) |
104 | | nfv 1516 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
105 | | nfcv 2308 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(2o ↑𝑚
𝐴) |
106 | | nfre1 2509 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o |
107 | 106 | nfn 1646 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥 ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o |
108 | 107 | nfn 1646 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 ¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o |
109 | 108, 106 | nfim 1560 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
110 | 105, 109 | nfralxy 2504 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
111 | 104, 110 | nfan 1553 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
112 | | nfv 1516 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑔 ∈ (2o
↑𝑚 𝐴) |
113 | 111, 112 | nfan 1553 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) |
114 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) |
115 | | fveq2 5486 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑔‘𝑧) = (𝑔‘𝑥)) |
116 | 115 | difeq2d 3240 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (1o ∖ (𝑔‘𝑧)) = (1o ∖ (𝑔‘𝑥))) |
117 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
118 | | difexg 4123 |
. . . . . . . . . . . . . 14
⊢
(1o ∈ V → (1o ∖ (𝑔‘𝑥)) ∈ V) |
119 | 29, 118 | mp1i 10 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (1o ∖ (𝑔‘𝑥)) ∈ V) |
120 | 114, 116,
117, 119 | fvmptd3 5579 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = (1o ∖ (𝑔‘𝑥))) |
121 | 120 | eqeq1d 2174 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ (1o
∖ (𝑔‘𝑥)) =
1o)) |
122 | 121 | notbid 657 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ (1o
∖ (𝑔‘𝑥)) =
1o)) |
123 | | difeq2 3234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑥) = ∅ → (1o ∖
(𝑔‘𝑥)) = (1o ∖
∅)) |
124 | 123, 35 | eqtrdi 2215 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) = ∅ → (1o ∖
(𝑔‘𝑥)) = 1o) |
125 | 124 | adantl 275 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → (1o ∖
(𝑔‘𝑥)) = 1o) |
126 | 125 | notnotd 620 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → ¬ ¬
(1o ∖ (𝑔‘𝑥)) = 1o) |
127 | | eqeq1 2172 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) = ∅ → ((𝑔‘𝑥) = 1o ↔ ∅ =
1o)) |
128 | 39, 127 | mtbiri 665 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑥) = ∅ → ¬ (𝑔‘𝑥) = 1o) |
129 | 128 | adantl 275 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → ¬ (𝑔‘𝑥) = 1o) |
130 | 126, 129 | 2falsed 692 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → (¬ (1o
∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = 1o)) |
131 | | difeq2 3234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑥) = 1o → (1o
∖ (𝑔‘𝑥)) = (1o ∖
1o)) |
132 | 131 | eqeq1d 2174 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) = 1o → ((1o
∖ (𝑔‘𝑥)) = 1o ↔
(1o ∖ 1o) = 1o)) |
133 | 46, 132 | mtbiri 665 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑥) = 1o → ¬ (1o
∖ (𝑔‘𝑥)) =
1o) |
134 | 133 | adantl 275 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → ¬
(1o ∖ (𝑔‘𝑥)) = 1o) |
135 | | simpr 109 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → (𝑔‘𝑥) = 1o) |
136 | 134, 135 | 2thd 174 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → (¬
(1o ∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = 1o)) |
137 | 91 | ad2antlr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑔:𝐴⟶2o) |
138 | 137, 117 | ffvelrnd 5621 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ 2o) |
139 | 138, 55 | eleqtrdi 2259 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ {∅,
1o}) |
140 | | elpri 3599 |
. . . . . . . . . . . 12
⊢ ((𝑔‘𝑥) ∈ {∅, 1o} →
((𝑔‘𝑥) = ∅ ∨ (𝑔‘𝑥) = 1o)) |
141 | 139, 140 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑔‘𝑥) = ∅ ∨ (𝑔‘𝑥) = 1o)) |
142 | 130, 136,
141 | mpjaodan 788 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (¬ (1o ∖
(𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = 1o)) |
143 | 122, 142 | bitrd 187 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ (𝑔‘𝑥) = 1o)) |
144 | 113, 143 | ralbida 2460 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∀𝑥 ∈ 𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
145 | 144 | notbid 657 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
146 | 103, 145 | bitr3id 193 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) |
147 | | simpr 109 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → (𝑔‘𝑥) = ∅) |
148 | 125, 147 | 2thd 174 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → ((1o ∖
(𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = ∅)) |
149 | 128, 135 | nsyl3 616 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → ¬ (𝑔‘𝑥) = ∅) |
150 | 134, 149 | 2falsed 692 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → ((1o
∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = ∅)) |
151 | 148, 150,
141 | mpjaodan 788 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1o ∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = ∅)) |
152 | 121, 151 | bitrd 187 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ (𝑔‘𝑥) = ∅)) |
153 | 113, 152 | rexbida 2461 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) |
154 | 101, 146,
153 | 3imtr3d 201 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) |
155 | 154 | ralrimiva 2539 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) |
156 | 9 | biimprd 157 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑔 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅) → 𝐴 ∈ Markov)) |
157 | 83, 155, 156 | sylc 62 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → 𝐴 ∈ Markov) |
158 | 157 | ex 114 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → 𝐴 ∈ Markov)) |
159 | 81, 158 | impbid2 142 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |