| Step | Hyp | Ref
 | Expression | 
| 1 |   | fveq1 5557 | 
. . . . . . . . 9
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (𝑔‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥)) | 
| 2 | 1 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → ((𝑔‘𝑥) = 1o ↔ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o)) | 
| 3 | 2 | ralbidv 2497 | 
. . . . . . 7
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o)) | 
| 4 | 3 | notbid 668 | 
. . . . . 6
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o)) | 
| 5 | 1 | eqeq1d 2205 | 
. . . . . . 7
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → ((𝑔‘𝑥) = ∅ ↔ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅)) | 
| 6 | 5 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → (∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅)) | 
| 7 | 4, 6 | imbi12d 234 | 
. . . . 5
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) → ((¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅) ↔ (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅))) | 
| 8 |   | elex 2774 | 
. . . . . . 7
⊢ (𝐴 ∈ Markov → 𝐴 ∈ V) | 
| 9 |   | ismkvmap 7220 | 
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 ∈ Markov ↔
∀𝑔 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅))) | 
| 10 | 9 | biimpd 144 | 
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 ∈ Markov →
∀𝑔 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅))) | 
| 11 | 8, 10 | mpcom 36 | 
. . . . . 6
⊢ (𝐴 ∈ Markov →
∀𝑔 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) | 
| 12 | 11 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) | 
| 13 |   | elmapi 6729 | 
. . . . . . . . . 10
⊢ (𝑓 ∈ (2o
↑𝑚 𝐴) → 𝑓:𝐴⟶2o) | 
| 14 | 13 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → 𝑓:𝐴⟶2o) | 
| 15 | 14 | ffvelcdmda 5697 | 
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑓‘𝑧) ∈ 2o) | 
| 16 |   | 2oconcl 6497 | 
. . . . . . . 8
⊢ ((𝑓‘𝑧) ∈ 2o → (1o
∖ (𝑓‘𝑧)) ∈
2o) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (1o ∖ (𝑓‘𝑧)) ∈ 2o) | 
| 18 | 17 | fmpttd 5717 | 
. . . . . 6
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))):𝐴⟶2o) | 
| 19 |   | 2onn 6579 | 
. . . . . . . 8
⊢
2o ∈ ω | 
| 20 | 19 | a1i 9 | 
. . . . . . 7
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → 2o ∈
ω) | 
| 21 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → 𝐴 ∈ Markov) | 
| 22 | 20, 21 | elmapd 6721 | 
. . . . . 6
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) ∈ (2o
↑𝑚 𝐴) ↔ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))):𝐴⟶2o)) | 
| 23 | 18, 22 | mpbird 167 | 
. . . . 5
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) ∈ (2o
↑𝑚 𝐴)) | 
| 24 | 7, 12, 23 | rspcdva 2873 | 
. . . 4
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅)) | 
| 25 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧))) | 
| 26 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑓‘𝑧) = (𝑓‘𝑥)) | 
| 27 | 26 | difeq2d 3281 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (1o ∖ (𝑓‘𝑧)) = (1o ∖ (𝑓‘𝑥))) | 
| 28 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 29 |   | 1oex 6482 | 
. . . . . . . . . . 11
⊢
1o ∈ V | 
| 30 |   | difexg 4174 | 
. . . . . . . . . . 11
⊢
(1o ∈ V → (1o ∖ (𝑓‘𝑥)) ∈ V) | 
| 31 | 29, 30 | mp1i 10 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (1o ∖ (𝑓‘𝑥)) ∈ V) | 
| 32 | 25, 27, 28, 31 | fvmptd3 5655 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = (1o ∖ (𝑓‘𝑥))) | 
| 33 | 32 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ (1o
∖ (𝑓‘𝑥)) =
1o)) | 
| 34 |   | difeq2 3275 | 
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) = ∅ → (1o ∖
(𝑓‘𝑥)) = (1o ∖
∅)) | 
| 35 |   | dif0 3521 | 
. . . . . . . . . . . 12
⊢
(1o ∖ ∅) = 1o | 
| 36 | 34, 35 | eqtrdi 2245 | 
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = ∅ → (1o ∖
(𝑓‘𝑥)) = 1o) | 
| 37 | 36 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → (1o ∖
(𝑓‘𝑥)) = 1o) | 
| 38 |   | 1n0 6490 | 
. . . . . . . . . . . . 13
⊢
1o ≠ ∅ | 
| 39 | 38 | nesymi 2413 | 
. . . . . . . . . . . 12
⊢  ¬
∅ = 1o | 
| 40 |   | eqeq1 2203 | 
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) = ∅ → ((𝑓‘𝑥) = 1o ↔ ∅ =
1o)) | 
| 41 | 39, 40 | mtbiri 676 | 
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = ∅ → ¬ (𝑓‘𝑥) = 1o) | 
| 42 | 41 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ¬ (𝑓‘𝑥) = 1o) | 
| 43 | 37, 42 | 2thd 175 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ((1o ∖
(𝑓‘𝑥)) = 1o ↔ ¬ (𝑓‘𝑥) = 1o)) | 
| 44 |   | difid 3519 | 
. . . . . . . . . . . . . 14
⊢
(1o ∖ 1o) = ∅ | 
| 45 | 44 | eqeq1i 2204 | 
. . . . . . . . . . . . 13
⊢
((1o ∖ 1o) = 1o ↔ ∅ =
1o) | 
| 46 | 39, 45 | mtbir 672 | 
. . . . . . . . . . . 12
⊢  ¬
(1o ∖ 1o) = 1o | 
| 47 |   | difeq2 3275 | 
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑥) = 1o → (1o
∖ (𝑓‘𝑥)) = (1o ∖
1o)) | 
| 48 | 47 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) = 1o → ((1o
∖ (𝑓‘𝑥)) = 1o ↔
(1o ∖ 1o) = 1o)) | 
| 49 | 46, 48 | mtbiri 676 | 
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = 1o → ¬ (1o
∖ (𝑓‘𝑥)) =
1o) | 
| 50 | 49 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ¬
(1o ∖ (𝑓‘𝑥)) = 1o) | 
| 51 |   | notnot 630 | 
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) = 1o → ¬ ¬ (𝑓‘𝑥) = 1o) | 
| 52 | 51 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ¬ ¬ (𝑓‘𝑥) = 1o) | 
| 53 | 50, 52 | 2falsed 703 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ((1o
∖ (𝑓‘𝑥)) = 1o ↔ ¬
(𝑓‘𝑥) = 1o)) | 
| 54 | 14 | ffvelcdmda 5697 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 2o) | 
| 55 |   | df2o3 6488 | 
. . . . . . . . . . 11
⊢
2o = {∅, 1o} | 
| 56 | 54, 55 | eleqtrdi 2289 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ {∅,
1o}) | 
| 57 |   | elpri 3645 | 
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ {∅, 1o} →
((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) = 1o)) | 
| 58 | 56, 57 | syl 14 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) = 1o)) | 
| 59 | 43, 53, 58 | mpjaodan 799 | 
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1o ∖ (𝑓‘𝑥)) = 1o ↔ ¬ (𝑓‘𝑥) = 1o)) | 
| 60 | 33, 59 | bitrd 188 | 
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ¬ (𝑓‘𝑥) = 1o)) | 
| 61 | 60 | ralbidva 2493 | 
. . . . . 6
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o)) | 
| 62 | 61 | notbid 668 | 
. . . . 5
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o)) | 
| 63 |   | ralnex 2485 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ¬ (𝑓‘𝑥) = 1o ↔ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) | 
| 64 | 63 | notbii 669 | 
. . . . 5
⊢ (¬
∀𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) | 
| 65 | 62, 64 | bitrdi 196 | 
. . . 4
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 66 | 32 | eqeq1d 2205 | 
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅ ↔ (1o ∖
(𝑓‘𝑥)) = ∅)) | 
| 67 | 35 | eqeq1i 2204 | 
. . . . . . . . . . 11
⊢
((1o ∖ ∅) = ∅ ↔ 1o =
∅) | 
| 68 | 38, 67 | nemtbir 2456 | 
. . . . . . . . . 10
⊢  ¬
(1o ∖ ∅) = ∅ | 
| 69 | 34 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) = ∅ → ((1o ∖
(𝑓‘𝑥)) = ∅ ↔ (1o ∖
∅) = ∅)) | 
| 70 | 68, 69 | mtbiri 676 | 
. . . . . . . . 9
⊢ ((𝑓‘𝑥) = ∅ → ¬ (1o
∖ (𝑓‘𝑥)) = ∅) | 
| 71 | 70 | adantl 277 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ¬ (1o
∖ (𝑓‘𝑥)) = ∅) | 
| 72 | 71, 42 | 2falsed 703 | 
. . . . . . 7
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = ∅) → ((1o ∖
(𝑓‘𝑥)) = ∅ ↔ (𝑓‘𝑥) = 1o)) | 
| 73 | 47, 44 | eqtrdi 2245 | 
. . . . . . . . 9
⊢ ((𝑓‘𝑥) = 1o → (1o
∖ (𝑓‘𝑥)) = ∅) | 
| 74 | 73 | adantl 277 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → (1o
∖ (𝑓‘𝑥)) = ∅) | 
| 75 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → (𝑓‘𝑥) = 1o) | 
| 76 | 74, 75 | 2thd 175 | 
. . . . . . 7
⊢ ((((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑓‘𝑥) = 1o) → ((1o
∖ (𝑓‘𝑥)) = ∅ ↔ (𝑓‘𝑥) = 1o)) | 
| 77 | 72, 76, 58 | mpjaodan 799 | 
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1o ∖ (𝑓‘𝑥)) = ∅ ↔ (𝑓‘𝑥) = 1o)) | 
| 78 | 66, 77 | bitrd 188 | 
. . . . 5
⊢ (((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅ ↔ (𝑓‘𝑥) = 1o)) | 
| 79 | 78 | rexbidva 2494 | 
. . . 4
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑓‘𝑧)))‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 80 | 24, 65, 79 | 3imtr3d 202 | 
. . 3
⊢ ((𝐴 ∈ Markov ∧ 𝑓 ∈ (2o
↑𝑚 𝐴)) → (¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 81 | 80 | ralrimiva 2570 | 
. 2
⊢ (𝐴 ∈ Markov →
∀𝑓 ∈
(2o ↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 82 |   | elex 2774 | 
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | 
| 83 | 82 | adantr 276 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → 𝐴 ∈ V) | 
| 84 |   | fveq1 5557 | 
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (𝑓‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥)) | 
| 85 | 84 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → ((𝑓‘𝑥) = 1o ↔ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) | 
| 86 | 85 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) | 
| 87 | 86 | notbid 668 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) | 
| 88 | 87 | notbid 668 | 
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → (¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) | 
| 89 | 88, 86 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) → ((¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (¬ ¬
∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o))) | 
| 90 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 91 |   | elmapi 6729 | 
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (2o
↑𝑚 𝐴) → 𝑔:𝐴⟶2o) | 
| 92 | 91 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝑔:𝐴⟶2o) | 
| 93 | 92 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑔‘𝑧) ∈ 2o) | 
| 94 |   | 2oconcl 6497 | 
. . . . . . . . . 10
⊢ ((𝑔‘𝑧) ∈ 2o → (1o
∖ (𝑔‘𝑧)) ∈
2o) | 
| 95 | 93, 94 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑧 ∈ 𝐴) → (1o ∖ (𝑔‘𝑧)) ∈ 2o) | 
| 96 | 95 | fmpttd 5717 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))):𝐴⟶2o) | 
| 97 | 19 | a1i 9 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 2o ∈
ω) | 
| 98 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → 𝐴 ∈ 𝑉) | 
| 99 | 97, 98 | elmapd 6721 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) ∈ (2o
↑𝑚 𝐴) ↔ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))):𝐴⟶2o)) | 
| 100 | 96, 99 | mpbird 167 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) ∈ (2o
↑𝑚 𝐴)) | 
| 101 | 89, 90, 100 | rspcdva 2873 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o)) | 
| 102 |   | ralnex 2485 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o) | 
| 103 | 102 | notbii 669 | 
. . . . . . 7
⊢ (¬
∀𝑥 ∈ 𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ¬
∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o) | 
| 104 |   | nfv 1542 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 | 
| 105 |   | nfcv 2339 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(2o ↑𝑚
𝐴) | 
| 106 |   | nfre1 2540 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o | 
| 107 | 106 | nfn 1672 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥 ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o | 
| 108 | 107 | nfn 1672 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 ¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o | 
| 109 | 108, 106 | nfim 1586 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(¬ ¬
∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) | 
| 110 | 105, 109 | nfralxy 2535 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) | 
| 111 | 104, 110 | nfan 1579 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | 
| 112 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑔 ∈ (2o
↑𝑚 𝐴) | 
| 113 | 111, 112 | nfan 1579 | 
. . . . . . . . 9
⊢
Ⅎ𝑥((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) | 
| 114 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) = (𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧))) | 
| 115 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑔‘𝑧) = (𝑔‘𝑥)) | 
| 116 | 115 | difeq2d 3281 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (1o ∖ (𝑔‘𝑧)) = (1o ∖ (𝑔‘𝑥))) | 
| 117 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 118 |   | difexg 4174 | 
. . . . . . . . . . . . . 14
⊢
(1o ∈ V → (1o ∖ (𝑔‘𝑥)) ∈ V) | 
| 119 | 29, 118 | mp1i 10 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (1o ∖ (𝑔‘𝑥)) ∈ V) | 
| 120 | 114, 116,
117, 119 | fvmptd3 5655 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = (1o ∖ (𝑔‘𝑥))) | 
| 121 | 120 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ (1o
∖ (𝑔‘𝑥)) =
1o)) | 
| 122 | 121 | notbid 668 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ (1o
∖ (𝑔‘𝑥)) =
1o)) | 
| 123 |   | difeq2 3275 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑥) = ∅ → (1o ∖
(𝑔‘𝑥)) = (1o ∖
∅)) | 
| 124 | 123, 35 | eqtrdi 2245 | 
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) = ∅ → (1o ∖
(𝑔‘𝑥)) = 1o) | 
| 125 | 124 | adantl 277 | 
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → (1o ∖
(𝑔‘𝑥)) = 1o) | 
| 126 | 125 | notnotd 631 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → ¬ ¬
(1o ∖ (𝑔‘𝑥)) = 1o) | 
| 127 |   | eqeq1 2203 | 
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) = ∅ → ((𝑔‘𝑥) = 1o ↔ ∅ =
1o)) | 
| 128 | 39, 127 | mtbiri 676 | 
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑥) = ∅ → ¬ (𝑔‘𝑥) = 1o) | 
| 129 | 128 | adantl 277 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → ¬ (𝑔‘𝑥) = 1o) | 
| 130 | 126, 129 | 2falsed 703 | 
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → (¬ (1o
∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = 1o)) | 
| 131 |   | difeq2 3275 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑥) = 1o → (1o
∖ (𝑔‘𝑥)) = (1o ∖
1o)) | 
| 132 | 131 | eqeq1d 2205 | 
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) = 1o → ((1o
∖ (𝑔‘𝑥)) = 1o ↔
(1o ∖ 1o) = 1o)) | 
| 133 | 46, 132 | mtbiri 676 | 
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑥) = 1o → ¬ (1o
∖ (𝑔‘𝑥)) =
1o) | 
| 134 | 133 | adantl 277 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → ¬
(1o ∖ (𝑔‘𝑥)) = 1o) | 
| 135 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → (𝑔‘𝑥) = 1o) | 
| 136 | 134, 135 | 2thd 175 | 
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → (¬
(1o ∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = 1o)) | 
| 137 | 91 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑔:𝐴⟶2o) | 
| 138 | 137, 117 | ffvelcdmd 5698 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ 2o) | 
| 139 | 138, 55 | eleqtrdi 2289 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ {∅,
1o}) | 
| 140 |   | elpri 3645 | 
. . . . . . . . . . . 12
⊢ ((𝑔‘𝑥) ∈ {∅, 1o} →
((𝑔‘𝑥) = ∅ ∨ (𝑔‘𝑥) = 1o)) | 
| 141 | 139, 140 | syl 14 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑔‘𝑥) = ∅ ∨ (𝑔‘𝑥) = 1o)) | 
| 142 | 130, 136,
141 | mpjaodan 799 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (¬ (1o ∖
(𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = 1o)) | 
| 143 | 122, 142 | bitrd 188 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ (𝑔‘𝑥) = 1o)) | 
| 144 | 113, 143 | ralbida 2491 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∀𝑥 ∈ 𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) | 
| 145 | 144 | notbid 668 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 ¬ ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) | 
| 146 | 103, 145 | bitr3id 194 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ¬ ∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o)) | 
| 147 |   | simpr 110 | 
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → (𝑔‘𝑥) = ∅) | 
| 148 | 125, 147 | 2thd 175 | 
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = ∅) → ((1o ∖
(𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = ∅)) | 
| 149 | 128, 135 | nsyl3 627 | 
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → ¬ (𝑔‘𝑥) = ∅) | 
| 150 | 134, 149 | 2falsed 703 | 
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑔‘𝑥) = 1o) → ((1o
∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = ∅)) | 
| 151 | 148, 150,
141 | mpjaodan 799 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1o ∖ (𝑔‘𝑥)) = 1o ↔ (𝑔‘𝑥) = ∅)) | 
| 152 | 121, 151 | bitrd 188 | 
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ (𝑔‘𝑥) = ∅)) | 
| 153 | 113, 152 | rexbida 2492 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (∃𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1o ∖ (𝑔‘𝑧)))‘𝑥) = 1o ↔ ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) | 
| 154 | 101, 146,
153 | 3imtr3d 202 | 
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ∧ 𝑔 ∈ (2o
↑𝑚 𝐴)) → (¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) | 
| 155 | 154 | ralrimiva 2570 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → ∀𝑔 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅)) | 
| 156 | 9 | biimprd 158 | 
. . . 4
⊢ (𝐴 ∈ V → (∀𝑔 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑔‘𝑥) = ∅) → 𝐴 ∈ Markov)) | 
| 157 | 83, 155, 156 | sylc 62 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → 𝐴 ∈ Markov) | 
| 158 | 157 | ex 115 | 
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → 𝐴 ∈ Markov)) | 
| 159 | 81, 158 | impbid2 143 | 
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ¬ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |