| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | ralbida 2500 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: raleqbidva 2720 poinxp 4745 funimass4 5631 fnmptfvd 5686 funimass3 5698 funconstss 5700 cocan1 5858 cocan2 5859 isocnv2 5883 isores2 5884 isoini2 5890 ofrfval 6169 ofrfval2 6177 dfsmo2 6375 smores 6380 smores2 6382 ac6sfi 6997 supisolem 7112 ordiso2 7139 ismkvnex 7259 nninfwlporlemd 7276 caucvgsrlemcau 7908 suplocsrlempr 7922 axsuploc 8147 suprleubex 9029 dfinfre 9031 zextlt 9467 prime 9474 infregelbex 9721 fzshftral 10232 nninfinf 10590 fimaxq 10974 swrdspsleq 11123 pfxeq 11150 clim 11625 clim2 11627 clim2c 11628 clim0c 11630 climabs0 11651 climrecvg1n 11692 mertenslem2 11880 mertensabs 11881 dfgcd2 12368 sqrt2irr 12517 pc11 12687 pcz 12688 1arith 12723 infpn2 12860 grpidpropdg 13239 sgrppropd 13278 mndpropd 13305 grppropd 13382 issubg4m 13562 rngpropd 13750 ringpropd 13833 oppr1g 13877 lsspropdg 14226 isridlrng 14277 isridl 14299 expghmap 14402 tgss2 14584 neipsm 14659 ssidcn 14715 lmbrf 14720 cnnei 14737 cnrest2 14741 lmss 14751 lmres 14753 ismet2 14859 elmopn2 14954 metss 14999 metrest 15011 metcnp 15017 metcnp2 15018 metcn 15019 txmetcnp 15023 divcnap 15070 elcncf2 15079 mulc1cncf 15094 cncfmet 15097 cdivcncfap 15109 limcdifap 15167 limcmpted 15168 cnlimc 15177 mpodvdsmulf1o 15495 2sqlem6 15630 iswomni0 16027 cndcap 16035 |
| Copyright terms: Public domain | W3C validator |