Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | ralbida 2460 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: raleqbidva 2675 poinxp 4673 funimass4 5537 funimass3 5601 funconstss 5603 cocan1 5755 cocan2 5756 isocnv2 5780 isores2 5781 isoini2 5787 ofrfval 6058 ofrfval2 6066 dfsmo2 6255 smores 6260 smores2 6262 ac6sfi 6864 supisolem 6973 ordiso2 7000 ismkvnex 7119 caucvgsrlemcau 7734 suplocsrlempr 7748 axsuploc 7971 suprleubex 8849 dfinfre 8851 zextlt 9283 prime 9290 infregelbex 9536 fzshftral 10043 fimaxq 10740 clim 11222 clim2 11224 clim2c 11225 clim0c 11227 climabs0 11248 climrecvg1n 11289 mertenslem2 11477 mertensabs 11478 dfgcd2 11947 sqrt2irr 12094 pc11 12262 pcz 12263 1arith 12297 infpn2 12389 grpidpropdg 12605 tgss2 12719 neipsm 12794 ssidcn 12850 lmbrf 12855 cnnei 12872 cnrest2 12876 lmss 12886 lmres 12888 ismet2 12994 elmopn2 13089 metss 13134 metrest 13146 metcnp 13152 metcnp2 13153 metcn 13154 txmetcnp 13158 divcnap 13195 elcncf2 13201 mulc1cncf 13216 cncfmet 13219 cdivcncfap 13227 limcdifap 13271 limcmpted 13272 cnlimc 13281 2sqlem6 13596 iswomni0 13930 |
Copyright terms: Public domain | W3C validator |