| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | ralbida 2500 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: raleqbidva 2720 poinxp 4744 funimass4 5629 fnmptfvd 5684 funimass3 5696 funconstss 5698 cocan1 5856 cocan2 5857 isocnv2 5881 isores2 5882 isoini2 5888 ofrfval 6167 ofrfval2 6175 dfsmo2 6373 smores 6378 smores2 6380 ac6sfi 6995 supisolem 7110 ordiso2 7137 ismkvnex 7257 nninfwlporlemd 7274 caucvgsrlemcau 7906 suplocsrlempr 7920 axsuploc 8145 suprleubex 9027 dfinfre 9029 zextlt 9465 prime 9472 infregelbex 9719 fzshftral 10230 nninfinf 10588 fimaxq 10972 swrdspsleq 11120 clim 11592 clim2 11594 clim2c 11595 clim0c 11597 climabs0 11618 climrecvg1n 11659 mertenslem2 11847 mertensabs 11848 dfgcd2 12335 sqrt2irr 12484 pc11 12654 pcz 12655 1arith 12690 infpn2 12827 grpidpropdg 13206 sgrppropd 13245 mndpropd 13272 grppropd 13349 issubg4m 13529 rngpropd 13717 ringpropd 13800 oppr1g 13844 lsspropdg 14193 isridlrng 14244 isridl 14266 expghmap 14369 tgss2 14551 neipsm 14626 ssidcn 14682 lmbrf 14687 cnnei 14704 cnrest2 14708 lmss 14718 lmres 14720 ismet2 14826 elmopn2 14921 metss 14966 metrest 14978 metcnp 14984 metcnp2 14985 metcn 14986 txmetcnp 14990 divcnap 15037 elcncf2 15046 mulc1cncf 15061 cncfmet 15064 cdivcncfap 15076 limcdifap 15134 limcmpted 15135 cnlimc 15144 mpodvdsmulf1o 15462 2sqlem6 15597 iswomni0 15990 cndcap 15998 |
| Copyright terms: Public domain | W3C validator |