| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | ralbida 2524 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: raleqbidva 2746 poinxp 4788 funimass4 5684 fnmptfvd 5739 funimass3 5751 funconstss 5753 cocan1 5911 cocan2 5912 isocnv2 5936 isores2 5937 isoini2 5943 ofrfval 6227 ofrfval2 6235 dfsmo2 6433 smores 6438 smores2 6440 ac6sfi 7060 supisolem 7175 ordiso2 7202 ismkvnex 7322 nninfwlporlemd 7339 caucvgsrlemcau 7980 suplocsrlempr 7994 axsuploc 8219 suprleubex 9101 dfinfre 9103 zextlt 9539 prime 9546 infregelbex 9793 fzshftral 10304 nninfinf 10665 fimaxq 11049 swrdspsleq 11199 pfxeq 11228 clim 11792 clim2 11794 clim2c 11795 clim0c 11797 climabs0 11818 climrecvg1n 11859 mertenslem2 12047 mertensabs 12048 dfgcd2 12535 sqrt2irr 12684 pc11 12854 pcz 12855 1arith 12890 infpn2 13027 grpidpropdg 13407 sgrppropd 13446 mndpropd 13473 grppropd 13550 issubg4m 13730 rngpropd 13918 ringpropd 14001 oppr1g 14045 lsspropdg 14395 isridlrng 14446 isridl 14468 expghmap 14571 tgss2 14753 neipsm 14828 ssidcn 14884 lmbrf 14889 cnnei 14906 cnrest2 14910 lmss 14920 lmres 14922 ismet2 15028 elmopn2 15123 metss 15168 metrest 15180 metcnp 15186 metcnp2 15187 metcn 15188 txmetcnp 15192 divcnap 15239 elcncf2 15248 mulc1cncf 15263 cncfmet 15266 cdivcncfap 15278 limcdifap 15336 limcmpted 15337 cnlimc 15346 mpodvdsmulf1o 15664 2sqlem6 15799 upgriswlkdc 16071 iswomni0 16419 cndcap 16427 |
| Copyright terms: Public domain | W3C validator |