Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | ralbida 2469 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2146 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-ral 2458 |
This theorem is referenced by: raleqbidva 2684 poinxp 4689 funimass4 5558 fnmptfvd 5612 funimass3 5624 funconstss 5626 cocan1 5778 cocan2 5779 isocnv2 5803 isores2 5804 isoini2 5810 ofrfval 6081 ofrfval2 6089 dfsmo2 6278 smores 6283 smores2 6285 ac6sfi 6888 supisolem 6997 ordiso2 7024 ismkvnex 7143 nninfwlporlemd 7160 caucvgsrlemcau 7767 suplocsrlempr 7781 axsuploc 8004 suprleubex 8884 dfinfre 8886 zextlt 9318 prime 9325 infregelbex 9571 fzshftral 10078 fimaxq 10775 clim 11257 clim2 11259 clim2c 11260 clim0c 11262 climabs0 11283 climrecvg1n 11324 mertenslem2 11512 mertensabs 11513 dfgcd2 11982 sqrt2irr 12129 pc11 12297 pcz 12298 1arith 12332 infpn2 12424 grpidpropdg 12668 mndpropd 12716 grppropd 12764 ringpropd 13022 oppr1g 13056 tgss2 13159 neipsm 13234 ssidcn 13290 lmbrf 13295 cnnei 13312 cnrest2 13316 lmss 13326 lmres 13328 ismet2 13434 elmopn2 13529 metss 13574 metrest 13586 metcnp 13592 metcnp2 13593 metcn 13594 txmetcnp 13598 divcnap 13635 elcncf2 13641 mulc1cncf 13656 cncfmet 13659 cdivcncfap 13667 limcdifap 13711 limcmpted 13712 cnlimc 13721 2sqlem6 14036 iswomni0 14369 |
Copyright terms: Public domain | W3C validator |