Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralbidva | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | ralbida 2464 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: raleqbidva 2679 poinxp 4680 funimass4 5547 fnmptfvd 5600 funimass3 5612 funconstss 5614 cocan1 5766 cocan2 5767 isocnv2 5791 isores2 5792 isoini2 5798 ofrfval 6069 ofrfval2 6077 dfsmo2 6266 smores 6271 smores2 6273 ac6sfi 6876 supisolem 6985 ordiso2 7012 ismkvnex 7131 nninfwlporlemd 7148 caucvgsrlemcau 7755 suplocsrlempr 7769 axsuploc 7992 suprleubex 8870 dfinfre 8872 zextlt 9304 prime 9311 infregelbex 9557 fzshftral 10064 fimaxq 10762 clim 11244 clim2 11246 clim2c 11247 clim0c 11249 climabs0 11270 climrecvg1n 11311 mertenslem2 11499 mertensabs 11500 dfgcd2 11969 sqrt2irr 12116 pc11 12284 pcz 12285 1arith 12319 infpn2 12411 grpidpropdg 12628 mndpropd 12676 grppropd 12724 tgss2 12873 neipsm 12948 ssidcn 13004 lmbrf 13009 cnnei 13026 cnrest2 13030 lmss 13040 lmres 13042 ismet2 13148 elmopn2 13243 metss 13288 metrest 13300 metcnp 13306 metcnp2 13307 metcn 13308 txmetcnp 13312 divcnap 13349 elcncf2 13355 mulc1cncf 13370 cncfmet 13373 cdivcncfap 13381 limcdifap 13425 limcmpted 13426 cnlimc 13435 2sqlem6 13750 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |