Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbida 2465 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-rex 2454 |
This theorem is referenced by: 2rexbiia 2486 2rexbidva 2493 rexeqbidva 2680 dfimafn 5545 funimass4 5547 fconstfvm 5714 fliftel 5772 fliftf 5778 f1oiso 5805 releldm2 6164 frecabcl 6378 qsinxp 6589 qliftel 6593 supisolem 6985 enumctlemm 7091 ismkvnex 7131 genpassl 7486 genpassu 7487 addcomprg 7540 mulcomprg 7542 1idprl 7552 1idpru 7553 archrecnq 7625 archrecpr 7626 caucvgprprlemexbt 7668 caucvgprprlemexb 7669 archsr 7744 map2psrprg 7767 suplocsrlempr 7769 axsuploc 7992 cnegexlem3 8096 cnegex2 8098 recexre 8497 rerecclap 8647 creur 8875 creui 8876 nndiv 8919 arch 9132 nnrecl 9133 expnlbnd 10600 fimaxq 10762 clim2 11246 clim2c 11247 clim0c 11249 climabs0 11270 climrecvg1n 11311 sumeq2 11322 mertensabs 11500 prodeq2 11520 zproddc 11542 nndivides 11759 alzdvds 11814 oddm1even 11834 oddnn02np1 11839 oddge22np1 11840 evennn02n 11841 evennn2n 11842 divalgb 11884 modremain 11888 modprmn0modprm0 12210 pythagtriplem2 12220 pythagtrip 12237 pceu 12249 mndpfo 12674 mndpropd 12676 grppropd 12724 iscnp3 12997 lmbrf 13009 cncnp 13024 lmss 13040 metrest 13300 metcnp 13306 metcnp2 13307 txmetcnp 13312 cdivcncfap 13381 ivthdec 13416 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |