Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1505 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbida 2449 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2125 ∃wrex 2433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-rex 2438 |
This theorem is referenced by: 2rexbiia 2470 2rexbidva 2477 rexeqbidva 2664 dfimafn 5510 funimass4 5512 fconstfvm 5678 fliftel 5734 fliftf 5740 f1oiso 5767 releldm2 6123 frecabcl 6336 qsinxp 6545 qliftel 6549 supisolem 6940 enumctlemm 7044 ismkvnex 7077 genpassl 7423 genpassu 7424 addcomprg 7477 mulcomprg 7479 1idprl 7489 1idpru 7490 archrecnq 7562 archrecpr 7563 caucvgprprlemexbt 7605 caucvgprprlemexb 7606 archsr 7681 map2psrprg 7704 suplocsrlempr 7706 axsuploc 7929 cnegexlem3 8031 cnegex2 8033 recexre 8432 rerecclap 8582 creur 8809 creui 8810 nndiv 8853 arch 9066 nnrecl 9067 expnlbnd 10520 fimaxq 10678 clim2 11157 clim2c 11158 clim0c 11160 climabs0 11181 climrecvg1n 11222 sumeq2 11233 mertensabs 11411 prodeq2 11431 zproddc 11453 nndivides 11667 alzdvds 11719 oddm1even 11739 oddnn02np1 11744 oddge22np1 11745 evennn02n 11746 evennn2n 11747 divalgb 11789 modremain 11793 iscnp3 12542 lmbrf 12554 cncnp 12569 lmss 12585 metrest 12845 metcnp 12851 metcnp2 12852 txmetcnp 12857 cdivcncfap 12926 ivthdec 12961 pw1nct 13514 |
Copyright terms: Public domain | W3C validator |