![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbida 2489 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-rex 2478 |
This theorem is referenced by: 2rexbiia 2510 2rexbidva 2517 rexeqbidva 2709 dfimafn 5606 funimass4 5608 fconstfvm 5777 fliftel 5837 fliftf 5843 f1oiso 5870 releldm2 6240 frecabcl 6454 qsinxp 6667 qliftel 6671 supisolem 7069 enumctlemm 7175 ismkvnex 7216 genpassl 7586 genpassu 7587 addcomprg 7640 mulcomprg 7642 1idprl 7652 1idpru 7653 archrecnq 7725 archrecpr 7726 caucvgprprlemexbt 7768 caucvgprprlemexb 7769 archsr 7844 map2psrprg 7867 suplocsrlempr 7869 axsuploc 8094 cnegexlem3 8198 cnegex2 8200 recexre 8599 rerecclap 8751 creur 8980 creui 8981 nndiv 9025 arch 9240 nnrecl 9241 expnlbnd 10738 fimaxq 10901 wrdval 10920 clim2 11429 clim2c 11430 clim0c 11432 climabs0 11453 climrecvg1n 11494 sumeq2 11505 mertensabs 11683 prodeq2 11703 zproddc 11725 nndivides 11943 alzdvds 11999 oddm1even 12019 oddnn02np1 12024 oddge22np1 12025 evennn02n 12026 evennn2n 12027 divalgb 12069 modremain 12073 modprmn0modprm0 12397 pythagtriplem2 12407 pythagtrip 12424 pceu 12436 4sqlem12 12543 gsumpropd2 12979 mndpfo 13022 mndpropd 13024 grppropd 13092 conjnmzb 13353 dvdsr02 13604 crngunit 13610 dvdsrpropdg 13646 cnfldui 14088 znunit 14158 iscnp3 14382 lmbrf 14394 cncnp 14409 lmss 14425 metrest 14685 metcnp 14691 metcnp2 14692 txmetcnp 14697 cdivcncfap 14783 ivthdec 14823 lgsquadlem2 15235 2lgslem1a 15245 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |