| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | rexbida 2500 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-rex 2489 |
| This theorem is referenced by: 2rexbiia 2521 2rexbidva 2528 rexeqbidva 2720 dfimafn 5626 funimass4 5628 fconstfvm 5801 fliftel 5861 fliftf 5867 f1oiso 5894 releldm2 6270 frecabcl 6484 qsinxp 6697 qliftel 6701 supisolem 7109 enumctlemm 7215 ismkvnex 7256 genpassl 7636 genpassu 7637 addcomprg 7690 mulcomprg 7692 1idprl 7702 1idpru 7703 archrecnq 7775 archrecpr 7776 caucvgprprlemexbt 7818 caucvgprprlemexb 7819 archsr 7894 map2psrprg 7917 suplocsrlempr 7919 axsuploc 8144 cnegexlem3 8248 cnegex2 8250 recexre 8650 rerecclap 8802 creur 9031 creui 9032 nndiv 9076 arch 9291 nnrecl 9292 expnlbnd 10807 fimaxq 10970 wrdval 10995 clim2 11565 clim2c 11566 clim0c 11568 climabs0 11589 climrecvg1n 11630 sumeq2 11641 mertensabs 11819 prodeq2 11839 zproddc 11861 nndivides 12079 alzdvds 12136 oddm1even 12157 oddnn02np1 12162 oddge22np1 12163 evennn02n 12164 evennn2n 12165 divalgb 12207 modremain 12211 modprmn0modprm0 12550 pythagtriplem2 12560 pythagtrip 12577 pceu 12589 4sqlem12 12696 gsumpropd2 13196 mndpfo 13241 mndpropd 13243 grppropd 13320 conjnmzb 13587 dvdsr02 13838 crngunit 13844 dvdsrpropdg 13880 cnfldui 14322 znunit 14392 iscnp3 14646 lmbrf 14658 cncnp 14673 lmss 14689 metrest 14949 metcnp 14955 metcnp2 14956 txmetcnp 14961 cdivcncfap 15047 ivthdec 15087 lgsquadlem2 15526 2lgslem1a 15536 pw1nct 15902 |
| Copyright terms: Public domain | W3C validator |