![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbida 2472 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-rex 2461 |
This theorem is referenced by: 2rexbiia 2493 2rexbidva 2500 rexeqbidva 2687 dfimafn 5564 funimass4 5566 fconstfvm 5734 fliftel 5793 fliftf 5799 f1oiso 5826 releldm2 6185 frecabcl 6399 qsinxp 6610 qliftel 6614 supisolem 7006 enumctlemm 7112 ismkvnex 7152 genpassl 7522 genpassu 7523 addcomprg 7576 mulcomprg 7578 1idprl 7588 1idpru 7589 archrecnq 7661 archrecpr 7662 caucvgprprlemexbt 7704 caucvgprprlemexb 7705 archsr 7780 map2psrprg 7803 suplocsrlempr 7805 axsuploc 8029 cnegexlem3 8133 cnegex2 8135 recexre 8534 rerecclap 8686 creur 8915 creui 8916 nndiv 8959 arch 9172 nnrecl 9173 expnlbnd 10644 fimaxq 10806 clim2 11290 clim2c 11291 clim0c 11293 climabs0 11314 climrecvg1n 11355 sumeq2 11366 mertensabs 11544 prodeq2 11564 zproddc 11586 nndivides 11803 alzdvds 11859 oddm1even 11879 oddnn02np1 11884 oddge22np1 11885 evennn02n 11886 evennn2n 11887 divalgb 11929 modremain 11933 modprmn0modprm0 12255 pythagtriplem2 12265 pythagtrip 12282 pceu 12294 mndpfo 12838 mndpropd 12840 grppropd 12892 dvdsr02 13272 crngunit 13278 dvdsrpropdg 13314 iscnp3 13673 lmbrf 13685 cncnp 13700 lmss 13716 metrest 13976 metcnp 13982 metcnp2 13983 txmetcnp 13988 cdivcncfap 14057 ivthdec 14092 pw1nct 14722 |
Copyright terms: Public domain | W3C validator |