![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbida 2472 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-rex 2461 |
This theorem is referenced by: 2rexbiia 2493 2rexbidva 2500 rexeqbidva 2688 dfimafn 5566 funimass4 5568 fconstfvm 5736 fliftel 5796 fliftf 5802 f1oiso 5829 releldm2 6188 frecabcl 6402 qsinxp 6613 qliftel 6617 supisolem 7009 enumctlemm 7115 ismkvnex 7155 genpassl 7525 genpassu 7526 addcomprg 7579 mulcomprg 7581 1idprl 7591 1idpru 7592 archrecnq 7664 archrecpr 7665 caucvgprprlemexbt 7707 caucvgprprlemexb 7708 archsr 7783 map2psrprg 7806 suplocsrlempr 7808 axsuploc 8032 cnegexlem3 8136 cnegex2 8138 recexre 8537 rerecclap 8689 creur 8918 creui 8919 nndiv 8962 arch 9175 nnrecl 9176 expnlbnd 10647 fimaxq 10809 clim2 11293 clim2c 11294 clim0c 11296 climabs0 11317 climrecvg1n 11358 sumeq2 11369 mertensabs 11547 prodeq2 11567 zproddc 11589 nndivides 11806 alzdvds 11862 oddm1even 11882 oddnn02np1 11887 oddge22np1 11888 evennn02n 11889 evennn2n 11890 divalgb 11932 modremain 11936 modprmn0modprm0 12258 pythagtriplem2 12268 pythagtrip 12285 pceu 12297 mndpfo 12844 mndpropd 12846 grppropd 12898 dvdsr02 13279 crngunit 13285 dvdsrpropdg 13321 iscnp3 13742 lmbrf 13754 cncnp 13769 lmss 13785 metrest 14045 metcnp 14051 metcnp2 14052 txmetcnp 14057 cdivcncfap 14126 ivthdec 14161 pw1nct 14791 |
Copyright terms: Public domain | W3C validator |