| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | rexbida 2525 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: 2rexbiia 2546 2rexbidva 2553 rexeqbidva 2747 dfimafn 5681 funimass4 5683 fconstfvm 5856 fliftel 5916 fliftf 5922 f1oiso 5949 releldm2 6329 frecabcl 6543 qsinxp 6756 qliftel 6760 supisolem 7171 enumctlemm 7277 ismkvnex 7318 genpassl 7707 genpassu 7708 addcomprg 7761 mulcomprg 7763 1idprl 7773 1idpru 7774 archrecnq 7846 archrecpr 7847 caucvgprprlemexbt 7889 caucvgprprlemexb 7890 archsr 7965 map2psrprg 7988 suplocsrlempr 7990 axsuploc 8215 cnegexlem3 8319 cnegex2 8321 recexre 8721 rerecclap 8873 creur 9102 creui 9103 nndiv 9147 arch 9362 nnrecl 9363 expnlbnd 10881 fimaxq 11044 wrdval 11069 clim2 11789 clim2c 11790 clim0c 11792 climabs0 11813 climrecvg1n 11854 sumeq2 11865 mertensabs 12043 prodeq2 12063 zproddc 12085 nndivides 12303 alzdvds 12360 oddm1even 12381 oddnn02np1 12386 oddge22np1 12387 evennn02n 12388 evennn2n 12389 divalgb 12431 modremain 12435 modprmn0modprm0 12774 pythagtriplem2 12784 pythagtrip 12801 pceu 12813 4sqlem12 12920 gsumpropd2 13421 mndpfo 13466 mndpropd 13468 grppropd 13545 conjnmzb 13812 dvdsr02 14063 crngunit 14069 dvdsrpropdg 14105 cnfldui 14547 znunit 14617 iscnp3 14871 lmbrf 14883 cncnp 14898 lmss 14914 metrest 15174 metcnp 15180 metcnp2 15181 txmetcnp 15186 cdivcncfap 15272 ivthdec 15312 lgsquadlem2 15751 2lgslem1a 15761 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |