| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | rexbida 2492 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-rex 2481 |
| This theorem is referenced by: 2rexbiia 2513 2rexbidva 2520 rexeqbidva 2712 dfimafn 5612 funimass4 5614 fconstfvm 5783 fliftel 5843 fliftf 5849 f1oiso 5876 releldm2 6252 frecabcl 6466 qsinxp 6679 qliftel 6683 supisolem 7083 enumctlemm 7189 ismkvnex 7230 genpassl 7610 genpassu 7611 addcomprg 7664 mulcomprg 7666 1idprl 7676 1idpru 7677 archrecnq 7749 archrecpr 7750 caucvgprprlemexbt 7792 caucvgprprlemexb 7793 archsr 7868 map2psrprg 7891 suplocsrlempr 7893 axsuploc 8118 cnegexlem3 8222 cnegex2 8224 recexre 8624 rerecclap 8776 creur 9005 creui 9006 nndiv 9050 arch 9265 nnrecl 9266 expnlbnd 10775 fimaxq 10938 wrdval 10957 clim2 11467 clim2c 11468 clim0c 11470 climabs0 11491 climrecvg1n 11532 sumeq2 11543 mertensabs 11721 prodeq2 11741 zproddc 11763 nndivides 11981 alzdvds 12038 oddm1even 12059 oddnn02np1 12064 oddge22np1 12065 evennn02n 12066 evennn2n 12067 divalgb 12109 modremain 12113 modprmn0modprm0 12452 pythagtriplem2 12462 pythagtrip 12479 pceu 12491 4sqlem12 12598 gsumpropd2 13097 mndpfo 13142 mndpropd 13144 grppropd 13221 conjnmzb 13488 dvdsr02 13739 crngunit 13745 dvdsrpropdg 13781 cnfldui 14223 znunit 14293 iscnp3 14547 lmbrf 14559 cncnp 14574 lmss 14590 metrest 14850 metcnp 14856 metcnp2 14857 txmetcnp 14862 cdivcncfap 14948 ivthdec 14988 lgsquadlem2 15427 2lgslem1a 15437 pw1nct 15758 |
| Copyright terms: Public domain | W3C validator |