| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | rexbida 2492 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-rex 2481 |
| This theorem is referenced by: 2rexbiia 2513 2rexbidva 2520 rexeqbidva 2712 dfimafn 5612 funimass4 5614 fconstfvm 5783 fliftel 5843 fliftf 5849 f1oiso 5876 releldm2 6252 frecabcl 6466 qsinxp 6679 qliftel 6683 supisolem 7083 enumctlemm 7189 ismkvnex 7230 genpassl 7608 genpassu 7609 addcomprg 7662 mulcomprg 7664 1idprl 7674 1idpru 7675 archrecnq 7747 archrecpr 7748 caucvgprprlemexbt 7790 caucvgprprlemexb 7791 archsr 7866 map2psrprg 7889 suplocsrlempr 7891 axsuploc 8116 cnegexlem3 8220 cnegex2 8222 recexre 8622 rerecclap 8774 creur 9003 creui 9004 nndiv 9048 arch 9263 nnrecl 9264 expnlbnd 10773 fimaxq 10936 wrdval 10955 clim2 11465 clim2c 11466 clim0c 11468 climabs0 11489 climrecvg1n 11530 sumeq2 11541 mertensabs 11719 prodeq2 11739 zproddc 11761 nndivides 11979 alzdvds 12036 oddm1even 12057 oddnn02np1 12062 oddge22np1 12063 evennn02n 12064 evennn2n 12065 divalgb 12107 modremain 12111 modprmn0modprm0 12450 pythagtriplem2 12460 pythagtrip 12477 pceu 12489 4sqlem12 12596 gsumpropd2 13095 mndpfo 13140 mndpropd 13142 grppropd 13219 conjnmzb 13486 dvdsr02 13737 crngunit 13743 dvdsrpropdg 13779 cnfldui 14221 znunit 14291 iscnp3 14523 lmbrf 14535 cncnp 14550 lmss 14566 metrest 14826 metcnp 14832 metcnp2 14833 txmetcnp 14838 cdivcncfap 14924 ivthdec 14964 lgsquadlem2 15403 2lgslem1a 15413 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |