![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbida 2489 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-rex 2478 |
This theorem is referenced by: 2rexbiia 2510 2rexbidva 2517 rexeqbidva 2709 dfimafn 5605 funimass4 5607 fconstfvm 5776 fliftel 5836 fliftf 5842 f1oiso 5869 releldm2 6238 frecabcl 6452 qsinxp 6665 qliftel 6669 supisolem 7067 enumctlemm 7173 ismkvnex 7214 genpassl 7584 genpassu 7585 addcomprg 7638 mulcomprg 7640 1idprl 7650 1idpru 7651 archrecnq 7723 archrecpr 7724 caucvgprprlemexbt 7766 caucvgprprlemexb 7767 archsr 7842 map2psrprg 7865 suplocsrlempr 7867 axsuploc 8092 cnegexlem3 8196 cnegex2 8198 recexre 8597 rerecclap 8749 creur 8978 creui 8979 nndiv 9023 arch 9237 nnrecl 9238 expnlbnd 10735 fimaxq 10898 wrdval 10917 clim2 11426 clim2c 11427 clim0c 11429 climabs0 11450 climrecvg1n 11491 sumeq2 11502 mertensabs 11680 prodeq2 11700 zproddc 11722 nndivides 11940 alzdvds 11996 oddm1even 12016 oddnn02np1 12021 oddge22np1 12022 evennn02n 12023 evennn2n 12024 divalgb 12066 modremain 12070 modprmn0modprm0 12394 pythagtriplem2 12404 pythagtrip 12421 pceu 12433 4sqlem12 12540 gsumpropd2 12976 mndpfo 13019 mndpropd 13021 grppropd 13089 conjnmzb 13350 dvdsr02 13601 crngunit 13607 dvdsrpropdg 13643 cnfldui 14077 znunit 14147 iscnp3 14371 lmbrf 14383 cncnp 14398 lmss 14414 metrest 14674 metcnp 14680 metcnp2 14681 txmetcnp 14686 cdivcncfap 14758 ivthdec 14798 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |