| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | rexbida 2500 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-rex 2489 |
| This theorem is referenced by: 2rexbiia 2521 2rexbidva 2528 rexeqbidva 2720 dfimafn 5621 funimass4 5623 fconstfvm 5792 fliftel 5852 fliftf 5858 f1oiso 5885 releldm2 6261 frecabcl 6475 qsinxp 6688 qliftel 6692 supisolem 7092 enumctlemm 7198 ismkvnex 7239 genpassl 7619 genpassu 7620 addcomprg 7673 mulcomprg 7675 1idprl 7685 1idpru 7686 archrecnq 7758 archrecpr 7759 caucvgprprlemexbt 7801 caucvgprprlemexb 7802 archsr 7877 map2psrprg 7900 suplocsrlempr 7902 axsuploc 8127 cnegexlem3 8231 cnegex2 8233 recexre 8633 rerecclap 8785 creur 9014 creui 9015 nndiv 9059 arch 9274 nnrecl 9275 expnlbnd 10790 fimaxq 10953 wrdval 10972 clim2 11513 clim2c 11514 clim0c 11516 climabs0 11537 climrecvg1n 11578 sumeq2 11589 mertensabs 11767 prodeq2 11787 zproddc 11809 nndivides 12027 alzdvds 12084 oddm1even 12105 oddnn02np1 12110 oddge22np1 12111 evennn02n 12112 evennn2n 12113 divalgb 12155 modremain 12159 modprmn0modprm0 12498 pythagtriplem2 12508 pythagtrip 12525 pceu 12537 4sqlem12 12644 gsumpropd2 13143 mndpfo 13188 mndpropd 13190 grppropd 13267 conjnmzb 13534 dvdsr02 13785 crngunit 13791 dvdsrpropdg 13827 cnfldui 14269 znunit 14339 iscnp3 14593 lmbrf 14605 cncnp 14620 lmss 14636 metrest 14896 metcnp 14902 metcnp2 14903 txmetcnp 14908 cdivcncfap 14994 ivthdec 15034 lgsquadlem2 15473 2lgslem1a 15483 pw1nct 15804 |
| Copyright terms: Public domain | W3C validator |