| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | rexbida 2502 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-rex 2491 |
| This theorem is referenced by: 2rexbiia 2523 2rexbidva 2530 rexeqbidva 2722 dfimafn 5640 funimass4 5642 fconstfvm 5815 fliftel 5875 fliftf 5881 f1oiso 5908 releldm2 6284 frecabcl 6498 qsinxp 6711 qliftel 6715 supisolem 7125 enumctlemm 7231 ismkvnex 7272 genpassl 7657 genpassu 7658 addcomprg 7711 mulcomprg 7713 1idprl 7723 1idpru 7724 archrecnq 7796 archrecpr 7797 caucvgprprlemexbt 7839 caucvgprprlemexb 7840 archsr 7915 map2psrprg 7938 suplocsrlempr 7940 axsuploc 8165 cnegexlem3 8269 cnegex2 8271 recexre 8671 rerecclap 8823 creur 9052 creui 9053 nndiv 9097 arch 9312 nnrecl 9313 expnlbnd 10831 fimaxq 10994 wrdval 11019 clim2 11669 clim2c 11670 clim0c 11672 climabs0 11693 climrecvg1n 11734 sumeq2 11745 mertensabs 11923 prodeq2 11943 zproddc 11965 nndivides 12183 alzdvds 12240 oddm1even 12261 oddnn02np1 12266 oddge22np1 12267 evennn02n 12268 evennn2n 12269 divalgb 12311 modremain 12315 modprmn0modprm0 12654 pythagtriplem2 12664 pythagtrip 12681 pceu 12693 4sqlem12 12800 gsumpropd2 13300 mndpfo 13345 mndpropd 13347 grppropd 13424 conjnmzb 13691 dvdsr02 13942 crngunit 13948 dvdsrpropdg 13984 cnfldui 14426 znunit 14496 iscnp3 14750 lmbrf 14762 cncnp 14777 lmss 14793 metrest 15053 metcnp 15059 metcnp2 15060 txmetcnp 15065 cdivcncfap 15151 ivthdec 15191 lgsquadlem2 15630 2lgslem1a 15640 pw1nct 16081 |
| Copyright terms: Public domain | W3C validator |