ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2w GIF version

Theorem rgen2w 2564
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rgenw.1 𝜑
Assertion
Ref Expression
rgen2w 𝑥𝐴𝑦𝐵 𝜑

Proof of Theorem rgen2w
StepHypRef Expression
1 rgenw.1 . . 3 𝜑
21rgenw 2563 . 2 𝑦𝐵 𝜑
32rgenw 2563 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff set class
Syntax hints:  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473
This theorem depends on definitions:  df-bi 117  df-ral 2491
This theorem is referenced by:  fnmpoi  6312  ixxf  10055  fzf  10169  rexfiuz  11415  prdsvallem  13219  eltx  14846  txcnp  14858  txcnmpt  14860  txrest  14863  txlm  14866
  Copyright terms: Public domain W3C validator