| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2w | GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 2563 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 2563 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2491 |
| This theorem is referenced by: fnmpoi 6312 ixxf 10055 fzf 10169 rexfiuz 11415 prdsvallem 13219 eltx 14846 txcnp 14858 txcnmpt 14860 txrest 14863 txlm 14866 |
| Copyright terms: Public domain | W3C validator |