Step | Hyp | Ref
| Expression |
1 | | txcnp.4 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | txcnp.5 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | txcnp.8 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) |
4 | | cnpf2 12847 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
5 | 1, 2, 3, 4 | syl3anc 1228 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
6 | 5 | fvmptelrn 5638 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
7 | | txcnp.6 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
8 | | txcnp.9 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) |
9 | | cnpf2 12847 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
10 | 1, 7, 8, 9 | syl3anc 1228 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
11 | 10 | fvmptelrn 5638 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑍) |
12 | 6, 11 | opelxpd 4637 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑌 × 𝑍)) |
13 | 12 | fmpttd 5640 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑌 × 𝑍)) |
14 | | txcnp.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
15 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
16 | 12 | elexd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
17 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
18 | 17 | fvmpt2 5569 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 〈𝐴, 𝐵〉 ∈ V) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈𝐴, 𝐵〉) |
19 | 15, 16, 18 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈𝐴, 𝐵〉) |
20 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
21 | 20 | fvmpt2 5569 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
22 | 15, 6, 21 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
23 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
24 | 23 | fvmpt2 5569 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑍) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) |
25 | 15, 11, 24 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) |
26 | 22, 25 | opeq12d 3766 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) |
27 | 19, 26 | eqtr4d 2201 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) |
28 | 27 | ralrimiva 2539 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) |
29 | | nffvmpt1 5497 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) |
30 | | nffvmpt1 5497 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) |
31 | | nffvmpt1 5497 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) |
32 | 30, 31 | nfop 3774 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 |
33 | 29, 32 | nfeq 2316 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 |
34 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷)) |
35 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) |
36 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)) |
37 | 35, 36 | opeq12d 3766 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐷 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉) |
38 | 34, 37 | eqeq12d 2180 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐷 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉)) |
39 | 33, 38 | rspc 2824 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉)) |
40 | 14, 28, 39 | sylc 62 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉) |
41 | 40 | eleq1d 2235 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) ↔ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤))) |
42 | 41 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) ↔ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤))) |
43 | 1 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐽 ∈ (TopOn‘𝑋)) |
44 | 2 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐾 ∈ (TopOn‘𝑌)) |
45 | 14 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐷 ∈ 𝑋) |
46 | 3 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) |
47 | | simplrl 525 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝑣 ∈ 𝐾) |
48 | | simprl 521 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣) |
49 | | icnpimaex 12851 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐷 ∈ 𝑋) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷) ∧ 𝑣 ∈ 𝐾 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣)) → ∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣)) |
50 | 43, 44, 45, 46, 47, 48, 49 | syl33anc 1243 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣)) |
51 | 7 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐿 ∈ (TopOn‘𝑍)) |
52 | 8 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) |
53 | | simplrr 526 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝑤 ∈ 𝐿) |
54 | | simprr 522 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) |
55 | | icnpimaex 12851 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ 𝐷 ∈ 𝑋) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷) ∧ 𝑤 ∈ 𝐿 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) |
56 | 43, 51, 45, 52, 53, 54, 55 | syl33anc 1243 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) |
57 | 50, 56 | jca 304 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) |
58 | 57 | ex 114 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) → (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) |
59 | | opelxp 4634 |
. . . . . . 7
⊢
(〈((𝑥 ∈
𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤) ↔ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) |
60 | | reeanv 2635 |
. . . . . . 7
⊢
(∃𝑟 ∈
𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) ↔ (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) |
61 | 58, 59, 60 | 3imtr4g 204 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) |
62 | 42, 61 | sylbid 149 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) |
63 | | an4 576 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) ↔ ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) |
64 | | elin 3305 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (𝑟 ∩ 𝑠) ↔ (𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠)) |
65 | 64 | biimpri 132 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) → 𝐷 ∈ (𝑟 ∩ 𝑠)) |
66 | 65 | a1i 9 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) → 𝐷 ∈ (𝑟 ∩ 𝑠))) |
67 | | simpl 108 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → 𝑟 ∈ 𝐽) |
68 | | toponss 12664 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑟 ∈ 𝐽) → 𝑟 ⊆ 𝑋) |
69 | 1, 67, 68 | syl2an 287 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → 𝑟 ⊆ 𝑋) |
70 | | ssinss1 3351 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ⊆ 𝑋 → (𝑟 ∩ 𝑠) ⊆ 𝑋) |
71 | 70 | adantl 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (𝑟 ∩ 𝑠) ⊆ 𝑋) |
72 | 71 | sselda 3142 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑋) |
73 | 28 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) |
74 | | nffvmpt1 5497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) |
75 | | nffvmpt1 5497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) |
76 | | nffvmpt1 5497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) |
77 | 75, 76 | nfop 3774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 |
78 | 74, 77 | nfeq 2316 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 |
79 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡)) |
80 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡)) |
81 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)) |
82 | 80, 81 | opeq12d 3766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉) |
83 | 79, 82 | eqeq12d 2180 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑡 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉)) |
84 | 78, 83 | rspc 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉)) |
85 | 72, 73, 84 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉) |
86 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ (𝑟 ∩ 𝑠)) |
87 | 86 | elin1d 3311 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑟) |
88 | 5 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
89 | 88 | ffund 5341 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → Fun (𝑥 ∈ 𝑋 ↦ 𝐴)) |
90 | 71 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ 𝑋) |
91 | 88 | fdmd 5344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) |
92 | 90, 91 | sseqtrrd 3181 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) |
93 | 92, 86 | sseldd 3143 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) |
94 | | funfvima 5716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) ∧ 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) → (𝑡 ∈ 𝑟 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟))) |
95 | 89, 93, 94 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑡 ∈ 𝑟 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟))) |
96 | 87, 95 | mpd 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟)) |
97 | 86 | elin2d 3312 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑠) |
98 | 10 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
99 | 98 | ffund 5341 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → Fun (𝑥 ∈ 𝑋 ↦ 𝐵)) |
100 | 98 | fdmd 5344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
101 | 90, 100 | sseqtrrd 3181 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
102 | 101, 86 | sseldd 3143 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
103 | | funfvima 5716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐵) ∧ 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) → (𝑡 ∈ 𝑠 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
104 | 99, 102, 103 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑡 ∈ 𝑠 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
105 | 97, 104 | mpd 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) |
106 | 96, 105 | opelxpd 4637 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
107 | 85, 106 | eqeltrd 2243 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
108 | 107 | ralrimiva 2539 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
109 | 13 | ffund 5341 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
110 | 109 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → Fun (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
111 | 13 | fdmd 5344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = 𝑋) |
112 | 111 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = 𝑋) |
113 | 71, 112 | sseqtrrd 3181 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
114 | | funimass4 5537 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∧ (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)))) |
115 | 110, 113,
114 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)))) |
116 | 108, 115 | mpbird 166 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
117 | 69, 116 | syldan 280 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
118 | 117 | adantlr 469 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) |
119 | | xpss12 4711 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤)) |
120 | | sstr2 3149 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) |
121 | 118, 119,
120 | syl2im 38 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) |
122 | 66, 121 | anim12d 333 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) |
123 | 63, 122 | syl5bi 151 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) |
124 | | topontop 12652 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
125 | 1, 124 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ Top) |
126 | | inopn 12641 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
127 | 126 | 3expb 1194 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
128 | 125, 127 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
129 | 128 | adantlr 469 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) |
130 | 123, 129 | jctild 314 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))))) |
131 | 130 | expimpd 361 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) ∧ ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) → ((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))))) |
132 | | eleq2 2230 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 ∩ 𝑠) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑟 ∩ 𝑠))) |
133 | | imaeq2 4942 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑟 ∩ 𝑠) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠))) |
134 | 133 | sseq1d 3171 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 ∩ 𝑠) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤) ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) |
135 | 132, 134 | anbi12d 465 |
. . . . . . . . 9
⊢ (𝑧 = (𝑟 ∩ 𝑠) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)) ↔ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) |
136 | 135 | rspcev 2830 |
. . . . . . . 8
⊢ (((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))) |
137 | 131, 136 | syl6 33 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) ∧ ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
138 | 137 | expd 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → ((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) |
139 | 138 | rexlimdvv 2590 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
140 | 62, 139 | syld 45 |
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
141 | 140 | ralrimivva 2548 |
. . 3
⊢ (𝜑 → ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
142 | | vex 2729 |
. . . . . 6
⊢ 𝑣 ∈ V |
143 | | vex 2729 |
. . . . . 6
⊢ 𝑤 ∈ V |
144 | 142, 143 | xpex 4719 |
. . . . 5
⊢ (𝑣 × 𝑤) ∈ V |
145 | 144 | rgen2w 2522 |
. . . 4
⊢
∀𝑣 ∈
𝐾 ∀𝑤 ∈ 𝐿 (𝑣 × 𝑤) ∈ V |
146 | | eqid 2165 |
. . . . 5
⊢ (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) = (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) |
147 | | eleq2 2230 |
. . . . . 6
⊢ (𝑦 = (𝑣 × 𝑤) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤))) |
148 | | sseq2 3166 |
. . . . . . . 8
⊢ (𝑦 = (𝑣 × 𝑤) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))) |
149 | 148 | anbi2d 460 |
. . . . . . 7
⊢ (𝑦 = (𝑣 × 𝑤) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦) ↔ (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
150 | 149 | rexbidv 2467 |
. . . . . 6
⊢ (𝑦 = (𝑣 × 𝑤) → (∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
151 | 147, 150 | imbi12d 233 |
. . . . 5
⊢ (𝑦 = (𝑣 × 𝑤) → ((((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) |
152 | 146, 151 | ralrnmpo 5956 |
. . . 4
⊢
(∀𝑣 ∈
𝐾 ∀𝑤 ∈ 𝐿 (𝑣 × 𝑤) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) |
153 | 145, 152 | ax-mp 5 |
. . 3
⊢
(∀𝑦 ∈
ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) |
154 | 141, 153 | sylibr 133 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦))) |
155 | | topontop 12652 |
. . . . 5
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
156 | 2, 155 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Top) |
157 | | topontop 12652 |
. . . . 5
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
158 | 7, 157 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ Top) |
159 | | eqid 2165 |
. . . . 5
⊢ ran
(𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) = ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) |
160 | 159 | txval 12895 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)))) |
161 | 156, 158,
160 | syl2anc 409 |
. . 3
⊢ (𝜑 → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)))) |
162 | | txtopon 12902 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) |
163 | 2, 7, 162 | syl2anc 409 |
. . 3
⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) |
164 | 1, 161, 163, 14 | tgcnp 12849 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷) ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑌 × 𝑍) ∧ ∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦))))) |
165 | 13, 154, 164 | mpbir2and 934 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷)) |