ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txcnp GIF version

Theorem txcnp 14507
Description: If two functions are continuous at 𝐷, then the ordered pair of them is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnp.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
txcnp.5 (𝜑𝐾 ∈ (TopOn‘𝑌))
txcnp.6 (𝜑𝐿 ∈ (TopOn‘𝑍))
txcnp.7 (𝜑𝐷𝑋)
txcnp.8 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
txcnp.9 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
Assertion
Ref Expression
txcnp (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍   𝑥,𝐷   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem txcnp
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnp.4 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 txcnp.5 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txcnp.8 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
4 cnpf2 14443 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1249 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
65fvmptelcdm 5715 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
7 txcnp.6 . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 txcnp.9 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
9 cnpf2 14443 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) → (𝑥𝑋𝐵):𝑋𝑍)
101, 7, 8, 9syl3anc 1249 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
1110fvmptelcdm 5715 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
126, 11opelxpd 4696 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑌 × 𝑍))
1312fmpttd 5717 . 2 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑌 × 𝑍))
14 txcnp.7 . . . . . . . . 9 (𝜑𝐷𝑋)
15 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥𝑋)
1612elexd 2776 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
17 eqid 2196 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1817fvmpt2 5645 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨𝐴, 𝐵⟩)
1915, 16, 18syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨𝐴, 𝐵⟩)
20 eqid 2196 . . . . . . . . . . . . . 14 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2120fvmpt2 5645 . . . . . . . . . . . . 13 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2215, 6, 21syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
23 eqid 2196 . . . . . . . . . . . . . 14 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2423fvmpt2 5645 . . . . . . . . . . . . 13 ((𝑥𝑋𝐵𝑍) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2515, 11, 24syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2622, 25opeq12d 3816 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2719, 26eqtr4d 2232 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
2827ralrimiva 2570 . . . . . . . . 9 (𝜑 → ∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
29 nffvmpt1 5569 . . . . . . . . . . 11 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷)
30 nffvmpt1 5569 . . . . . . . . . . . 12 𝑥((𝑥𝑋𝐴)‘𝐷)
31 nffvmpt1 5569 . . . . . . . . . . . 12 𝑥((𝑥𝑋𝐵)‘𝐷)
3230, 31nfop 3824 . . . . . . . . . . 11 𝑥⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩
3329, 32nfeq 2347 . . . . . . . . . 10 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩
34 fveq2 5558 . . . . . . . . . . 11 (𝑥 = 𝐷 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷))
35 fveq2 5558 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝐷))
36 fveq2 5558 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝐷))
3735, 36opeq12d 3816 . . . . . . . . . . 11 (𝑥 = 𝐷 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩)
3834, 37eqeq12d 2211 . . . . . . . . . 10 (𝑥 = 𝐷 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩))
3933, 38rspc 2862 . . . . . . . . 9 (𝐷𝑋 → (∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩))
4014, 28, 39sylc 62 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩)
4140eleq1d 2265 . . . . . . 7 (𝜑 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) ↔ ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤)))
4241adantr 276 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) ↔ ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤)))
431ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐽 ∈ (TopOn‘𝑋))
442ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐾 ∈ (TopOn‘𝑌))
4514ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐷𝑋)
463ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
47 simplrl 535 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝑣𝐾)
48 simprl 529 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣)
49 icnpimaex 14447 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐷𝑋) ∧ ((𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷) ∧ 𝑣𝐾 ∧ ((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣)) → ∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣))
5043, 44, 45, 46, 47, 48, 49syl33anc 1264 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣))
517ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐿 ∈ (TopOn‘𝑍))
528ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
53 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝑤𝐿)
54 simprr 531 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)
55 icnpimaex 14447 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ 𝐷𝑋) ∧ ((𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷) ∧ 𝑤𝐿 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))
5643, 51, 45, 52, 53, 54, 55syl33anc 1264 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))
5750, 56jca 306 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
5857ex 115 . . . . . . 7 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → ((((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤) → (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
59 opelxp 4693 . . . . . . 7 (⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤) ↔ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤))
60 reeanv 2667 . . . . . . 7 (∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) ↔ (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
6158, 59, 603imtr4g 205 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤) → ∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
6242, 61sylbid 150 . . . . 5 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
63 an4 586 . . . . . . . . . . 11 (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) ↔ ((𝐷𝑟𝐷𝑠) ∧ (((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
64 elin 3346 . . . . . . . . . . . . . 14 (𝐷 ∈ (𝑟𝑠) ↔ (𝐷𝑟𝐷𝑠))
6564biimpri 133 . . . . . . . . . . . . 13 ((𝐷𝑟𝐷𝑠) → 𝐷 ∈ (𝑟𝑠))
6665a1i 9 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((𝐷𝑟𝐷𝑠) → 𝐷 ∈ (𝑟𝑠)))
67 simpl 109 . . . . . . . . . . . . . . . 16 ((𝑟𝐽𝑠𝐽) → 𝑟𝐽)
68 toponss 14262 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑟𝐽) → 𝑟𝑋)
691, 67, 68syl2an 289 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → 𝑟𝑋)
70 ssinss1 3392 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑋 → (𝑟𝑠) ⊆ 𝑋)
7170adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑟𝑋) → (𝑟𝑠) ⊆ 𝑋)
7271sselda 3183 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑋)
7328ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
74 nffvmpt1 5569 . . . . . . . . . . . . . . . . . . . . 21 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡)
75 nffvmpt1 5569 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑥𝑋𝐴)‘𝑡)
76 nffvmpt1 5569 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑥𝑋𝐵)‘𝑡)
7775, 76nfop 3824 . . . . . . . . . . . . . . . . . . . . 21 𝑥⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩
7874, 77nfeq 2347 . . . . . . . . . . . . . . . . . . . 20 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩
79 fveq2 5558 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡))
80 fveq2 5558 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑡))
81 fveq2 5558 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑡))
8280, 81opeq12d 3816 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩)
8379, 82eqeq12d 2211 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑡 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩))
8478, 83rspc 2862 . . . . . . . . . . . . . . . . . . 19 (𝑡𝑋 → (∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩))
8572, 73, 84sylc 62 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩)
86 simpr 110 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ (𝑟𝑠))
8786elin1d 3352 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑟)
885ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑥𝑋𝐴):𝑋𝑌)
8988ffund 5411 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → Fun (𝑥𝑋𝐴))
9071adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ 𝑋)
9188fdmd 5414 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → dom (𝑥𝑋𝐴) = 𝑋)
9290, 91sseqtrrd 3222 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ dom (𝑥𝑋𝐴))
9392, 86sseldd 3184 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ dom (𝑥𝑋𝐴))
94 funfvima 5794 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝑥𝑋𝐴) ∧ 𝑡 ∈ dom (𝑥𝑋𝐴)) → (𝑡𝑟 → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟)))
9589, 93, 94syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑡𝑟 → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟)))
9687, 95mpd 13 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟))
9786elin2d 3353 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑠)
9810ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑥𝑋𝐵):𝑋𝑍)
9998ffund 5411 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → Fun (𝑥𝑋𝐵))
10098fdmd 5414 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → dom (𝑥𝑋𝐵) = 𝑋)
10190, 100sseqtrrd 3222 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ dom (𝑥𝑋𝐵))
102101, 86sseldd 3184 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ dom (𝑥𝑋𝐵))
103 funfvima 5794 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝑥𝑋𝐵) ∧ 𝑡 ∈ dom (𝑥𝑋𝐵)) → (𝑡𝑠 → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠)))
10499, 102, 103syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑡𝑠 → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠)))
10597, 104mpd 13 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠))
10696, 105opelxpd 4696 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩ ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
10785, 106eqeltrd 2273 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
108107ralrimiva 2570 . . . . . . . . . . . . . . . 16 ((𝜑𝑟𝑋) → ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
10913ffund 5411 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
110109adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟𝑋) → Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
11113fdmd 5414 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = 𝑋)
112111adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟𝑋) → dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = 𝑋)
11371, 112sseqtrrd 3222 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟𝑋) → (𝑟𝑠) ⊆ dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
114 funimass4 5611 . . . . . . . . . . . . . . . . 17 ((Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∧ (𝑟𝑠) ⊆ dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠))))
115110, 113, 114syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑟𝑋) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠))))
116108, 115mpbird 167 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
11769, 116syldan 282 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
118117adantlr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
119 xpss12 4770 . . . . . . . . . . . . 13 ((((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤) → (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤))
120 sstr2 3190 . . . . . . . . . . . . 13 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) → ((((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
121118, 119, 120syl2im 38 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
12266, 121anim12d 335 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟𝐷𝑠) ∧ (((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
12363, 122biimtrid 152 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
124 topontop 14250 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1251, 124syl 14 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
126 inopn 14239 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑟𝐽𝑠𝐽) → (𝑟𝑠) ∈ 𝐽)
1271263expb 1206 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
128125, 127sylan 283 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
129128adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
130123, 129jctild 316 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))))
131130expimpd 363 . . . . . . . 8 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑟𝐽𝑠𝐽) ∧ ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))) → ((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))))
132 eleq2 2260 . . . . . . . . . 10 (𝑧 = (𝑟𝑠) → (𝐷𝑧𝐷 ∈ (𝑟𝑠)))
133 imaeq2 5005 . . . . . . . . . . 11 (𝑧 = (𝑟𝑠) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)))
134133sseq1d 3212 . . . . . . . . . 10 (𝑧 = (𝑟𝑠) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤) ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
135132, 134anbi12d 473 . . . . . . . . 9 (𝑧 = (𝑟𝑠) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)) ↔ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
136135rspcev 2868 . . . . . . . 8 (((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))
137131, 136syl6 33 . . . . . . 7 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑟𝐽𝑠𝐽) ∧ ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
138137expd 258 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → ((𝑟𝐽𝑠𝐽) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
139138rexlimdvv 2621 . . . . 5 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
14062, 139syld 45 . . . 4 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
141140ralrimivva 2579 . . 3 (𝜑 → ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
142 vex 2766 . . . . . 6 𝑣 ∈ V
143 vex 2766 . . . . . 6 𝑤 ∈ V
144142, 143xpex 4778 . . . . 5 (𝑣 × 𝑤) ∈ V
145144rgen2w 2553 . . . 4 𝑣𝐾𝑤𝐿 (𝑣 × 𝑤) ∈ V
146 eqid 2196 . . . . 5 (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤)) = (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))
147 eleq2 2260 . . . . . 6 (𝑦 = (𝑣 × 𝑤) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤)))
148 sseq2 3207 . . . . . . . 8 (𝑦 = (𝑣 × 𝑤) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))
149148anbi2d 464 . . . . . . 7 (𝑦 = (𝑣 × 𝑤) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
150149rexbidv 2498 . . . . . 6 (𝑦 = (𝑣 × 𝑤) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
151147, 150imbi12d 234 . . . . 5 (𝑦 = (𝑣 × 𝑤) → ((((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
152146, 151ralrnmpo 6037 . . . 4 (∀𝑣𝐾𝑤𝐿 (𝑣 × 𝑤) ∈ V → (∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
153145, 152ax-mp 5 . . 3 (∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
154141, 153sylibr 134 . 2 (𝜑 → ∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)))
155 topontop 14250 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1562, 155syl 14 . . . 4 (𝜑𝐾 ∈ Top)
157 topontop 14250 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
1587, 157syl 14 . . . 4 (𝜑𝐿 ∈ Top)
159 eqid 2196 . . . . 5 ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤)) = ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))
160159txval 14491 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))))
161156, 158, 160syl2anc 411 . . 3 (𝜑 → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))))
162 txtopon 14498 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
1632, 7, 162syl2anc 411 . . 3 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
1641, 161, 163, 14tgcnp 14445 . 2 (𝜑 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷) ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑌 × 𝑍) ∧ ∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)))))
16513, 154, 164mpbir2and 946 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  cin 3156  wss 3157  cop 3625  cmpt 4094   × cxp 4661  dom cdm 4663  ran crn 4664  cima 4666  Fun wfun 5252  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  topGenctg 12925  Topctop 14233  TopOnctopon 14246   CnP ccnp 14422   ×t ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-cnp 14425  df-tx 14489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator