ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txcnp GIF version

Theorem txcnp 14439
Description: If two functions are continuous at 𝐷, then the ordered pair of them is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnp.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
txcnp.5 (𝜑𝐾 ∈ (TopOn‘𝑌))
txcnp.6 (𝜑𝐿 ∈ (TopOn‘𝑍))
txcnp.7 (𝜑𝐷𝑋)
txcnp.8 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
txcnp.9 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
Assertion
Ref Expression
txcnp (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍   𝑥,𝐷   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem txcnp
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnp.4 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 txcnp.5 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txcnp.8 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
4 cnpf2 14375 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1249 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
65fvmptelcdm 5711 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
7 txcnp.6 . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 txcnp.9 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
9 cnpf2 14375 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) → (𝑥𝑋𝐵):𝑋𝑍)
101, 7, 8, 9syl3anc 1249 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
1110fvmptelcdm 5711 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
126, 11opelxpd 4692 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑌 × 𝑍))
1312fmpttd 5713 . 2 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑌 × 𝑍))
14 txcnp.7 . . . . . . . . 9 (𝜑𝐷𝑋)
15 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥𝑋)
1612elexd 2773 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
17 eqid 2193 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1817fvmpt2 5641 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨𝐴, 𝐵⟩)
1915, 16, 18syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨𝐴, 𝐵⟩)
20 eqid 2193 . . . . . . . . . . . . . 14 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2120fvmpt2 5641 . . . . . . . . . . . . 13 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2215, 6, 21syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
23 eqid 2193 . . . . . . . . . . . . . 14 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2423fvmpt2 5641 . . . . . . . . . . . . 13 ((𝑥𝑋𝐵𝑍) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2515, 11, 24syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2622, 25opeq12d 3812 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2719, 26eqtr4d 2229 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
2827ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
29 nffvmpt1 5565 . . . . . . . . . . 11 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷)
30 nffvmpt1 5565 . . . . . . . . . . . 12 𝑥((𝑥𝑋𝐴)‘𝐷)
31 nffvmpt1 5565 . . . . . . . . . . . 12 𝑥((𝑥𝑋𝐵)‘𝐷)
3230, 31nfop 3820 . . . . . . . . . . 11 𝑥⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩
3329, 32nfeq 2344 . . . . . . . . . 10 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩
34 fveq2 5554 . . . . . . . . . . 11 (𝑥 = 𝐷 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷))
35 fveq2 5554 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝐷))
36 fveq2 5554 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝐷))
3735, 36opeq12d 3812 . . . . . . . . . . 11 (𝑥 = 𝐷 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩)
3834, 37eqeq12d 2208 . . . . . . . . . 10 (𝑥 = 𝐷 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩))
3933, 38rspc 2858 . . . . . . . . 9 (𝐷𝑋 → (∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩))
4014, 28, 39sylc 62 . . . . . . . 8 (𝜑 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) = ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩)
4140eleq1d 2262 . . . . . . 7 (𝜑 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) ↔ ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤)))
4241adantr 276 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) ↔ ⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤)))
431ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐽 ∈ (TopOn‘𝑋))
442ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐾 ∈ (TopOn‘𝑌))
4514ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐷𝑋)
463ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))
47 simplrl 535 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝑣𝐾)
48 simprl 529 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣)
49 icnpimaex 14379 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐷𝑋) ∧ ((𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷) ∧ 𝑣𝐾 ∧ ((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣)) → ∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣))
5043, 44, 45, 46, 47, 48, 49syl33anc 1264 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣))
517ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝐿 ∈ (TopOn‘𝑍))
528ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))
53 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → 𝑤𝐿)
54 simprr 531 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)
55 icnpimaex 14379 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ 𝐷𝑋) ∧ ((𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷) ∧ 𝑤𝐿 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))
5643, 51, 45, 52, 53, 54, 55syl33anc 1264 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))
5750, 56jca 306 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤)) → (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
5857ex 115 . . . . . . 7 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → ((((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤) → (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
59 opelxp 4689 . . . . . . 7 (⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤) ↔ (((𝑥𝑋𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥𝑋𝐵)‘𝐷) ∈ 𝑤))
60 reeanv 2664 . . . . . . 7 (∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) ↔ (∃𝑟𝐽 (𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠𝐽 (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
6158, 59, 603imtr4g 205 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (⟨((𝑥𝑋𝐴)‘𝐷), ((𝑥𝑋𝐵)‘𝐷)⟩ ∈ (𝑣 × 𝑤) → ∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
6242, 61sylbid 150 . . . . 5 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))))
63 an4 586 . . . . . . . . . . 11 (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) ↔ ((𝐷𝑟𝐷𝑠) ∧ (((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)))
64 elin 3342 . . . . . . . . . . . . . 14 (𝐷 ∈ (𝑟𝑠) ↔ (𝐷𝑟𝐷𝑠))
6564biimpri 133 . . . . . . . . . . . . 13 ((𝐷𝑟𝐷𝑠) → 𝐷 ∈ (𝑟𝑠))
6665a1i 9 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((𝐷𝑟𝐷𝑠) → 𝐷 ∈ (𝑟𝑠)))
67 simpl 109 . . . . . . . . . . . . . . . 16 ((𝑟𝐽𝑠𝐽) → 𝑟𝐽)
68 toponss 14194 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑟𝐽) → 𝑟𝑋)
691, 67, 68syl2an 289 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → 𝑟𝑋)
70 ssinss1 3388 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑋 → (𝑟𝑠) ⊆ 𝑋)
7170adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑟𝑋) → (𝑟𝑠) ⊆ 𝑋)
7271sselda 3179 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑋)
7328ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩)
74 nffvmpt1 5565 . . . . . . . . . . . . . . . . . . . . 21 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡)
75 nffvmpt1 5565 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑥𝑋𝐴)‘𝑡)
76 nffvmpt1 5565 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝑥𝑋𝐵)‘𝑡)
7775, 76nfop 3820 . . . . . . . . . . . . . . . . . . . . 21 𝑥⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩
7874, 77nfeq 2344 . . . . . . . . . . . . . . . . . . . 20 𝑥((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩
79 fveq2 5554 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡))
80 fveq2 5554 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑡))
81 fveq2 5554 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑡))
8280, 81opeq12d 3812 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩)
8379, 82eqeq12d 2208 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑡 → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩))
8478, 83rspc 2858 . . . . . . . . . . . . . . . . . . 19 (𝑡𝑋 → (∀𝑥𝑋 ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑥) = ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩))
8572, 73, 84sylc 62 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) = ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩)
86 simpr 110 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ (𝑟𝑠))
8786elin1d 3348 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑟)
885ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑥𝑋𝐴):𝑋𝑌)
8988ffund 5407 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → Fun (𝑥𝑋𝐴))
9071adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ 𝑋)
9188fdmd 5410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → dom (𝑥𝑋𝐴) = 𝑋)
9290, 91sseqtrrd 3218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ dom (𝑥𝑋𝐴))
9392, 86sseldd 3180 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ dom (𝑥𝑋𝐴))
94 funfvima 5790 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝑥𝑋𝐴) ∧ 𝑡 ∈ dom (𝑥𝑋𝐴)) → (𝑡𝑟 → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟)))
9589, 93, 94syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑡𝑟 → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟)))
9687, 95mpd 13 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋𝐴)‘𝑡) ∈ ((𝑥𝑋𝐴) “ 𝑟))
9786elin2d 3349 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡𝑠)
9810ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑥𝑋𝐵):𝑋𝑍)
9998ffund 5407 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → Fun (𝑥𝑋𝐵))
10098fdmd 5410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → dom (𝑥𝑋𝐵) = 𝑋)
10190, 100sseqtrrd 3218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑟𝑠) ⊆ dom (𝑥𝑋𝐵))
102101, 86sseldd 3180 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → 𝑡 ∈ dom (𝑥𝑋𝐵))
103 funfvima 5790 . . . . . . . . . . . . . . . . . . . . 21 ((Fun (𝑥𝑋𝐵) ∧ 𝑡 ∈ dom (𝑥𝑋𝐵)) → (𝑡𝑠 → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠)))
10499, 102, 103syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → (𝑡𝑠 → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠)))
10597, 104mpd 13 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋𝐵)‘𝑡) ∈ ((𝑥𝑋𝐵) “ 𝑠))
10696, 105opelxpd 4692 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ⟨((𝑥𝑋𝐴)‘𝑡), ((𝑥𝑋𝐵)‘𝑡)⟩ ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
10785, 106eqeltrd 2270 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟𝑋) ∧ 𝑡 ∈ (𝑟𝑠)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
108107ralrimiva 2567 . . . . . . . . . . . . . . . 16 ((𝜑𝑟𝑋) → ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
10913ffund 5407 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
110109adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟𝑋) → Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
11113fdmd 5410 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = 𝑋)
112111adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟𝑋) → dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = 𝑋)
11371, 112sseqtrrd 3218 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟𝑋) → (𝑟𝑠) ⊆ dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
114 funimass4 5607 . . . . . . . . . . . . . . . . 17 ((Fun (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∧ (𝑟𝑠) ⊆ dom (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠))))
115110, 113, 114syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑟𝑋) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟𝑠)((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝑡) ∈ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠))))
116108, 115mpbird 167 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑋) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
11769, 116syldan 282 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
118117adantlr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)))
119 xpss12 4766 . . . . . . . . . . . . 13 ((((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤) → (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤))
120 sstr2 3186 . . . . . . . . . . . . 13 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) → ((((𝑥𝑋𝐴) “ 𝑟) × ((𝑥𝑋𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
121118, 119, 120syl2im 38 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → ((((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
12266, 121anim12d 335 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟𝐷𝑠) ∧ (((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
12363, 122biimtrid 152 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
124 topontop 14182 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1251, 124syl 14 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
126 inopn 14171 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑟𝐽𝑠𝐽) → (𝑟𝑠) ∈ 𝐽)
1271263expb 1206 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
128125, 127sylan 283 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
129128adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (𝑟𝑠) ∈ 𝐽)
130123, 129jctild 316 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐾𝑤𝐿)) ∧ (𝑟𝐽𝑠𝐽)) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))))
131130expimpd 363 . . . . . . . 8 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑟𝐽𝑠𝐽) ∧ ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))) → ((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))))
132 eleq2 2257 . . . . . . . . . 10 (𝑧 = (𝑟𝑠) → (𝐷𝑧𝐷 ∈ (𝑟𝑠)))
133 imaeq2 5001 . . . . . . . . . . 11 (𝑧 = (𝑟𝑠) → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) = ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)))
134133sseq1d 3208 . . . . . . . . . 10 (𝑧 = (𝑟𝑠) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤) ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤)))
135132, 134anbi12d 473 . . . . . . . . 9 (𝑧 = (𝑟𝑠) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)) ↔ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))))
136135rspcev 2864 . . . . . . . 8 (((𝑟𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟𝑠) ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ (𝑟𝑠)) ⊆ (𝑣 × 𝑤))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))
137131, 136syl6 33 . . . . . . 7 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑟𝐽𝑠𝐽) ∧ ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
138137expd 258 . . . . . 6 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → ((𝑟𝐽𝑠𝐽) → (((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
139138rexlimdvv 2618 . . . . 5 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (∃𝑟𝐽𝑠𝐽 ((𝐷𝑟 ∧ ((𝑥𝑋𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷𝑠 ∧ ((𝑥𝑋𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
14062, 139syld 45 . . . 4 ((𝜑 ∧ (𝑣𝐾𝑤𝐿)) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
141140ralrimivva 2576 . . 3 (𝜑 → ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
142 vex 2763 . . . . . 6 𝑣 ∈ V
143 vex 2763 . . . . . 6 𝑤 ∈ V
144142, 143xpex 4774 . . . . 5 (𝑣 × 𝑤) ∈ V
145144rgen2w 2550 . . . 4 𝑣𝐾𝑤𝐿 (𝑣 × 𝑤) ∈ V
146 eqid 2193 . . . . 5 (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤)) = (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))
147 eleq2 2257 . . . . . 6 (𝑦 = (𝑣 × 𝑤) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤)))
148 sseq2 3203 . . . . . . . 8 (𝑦 = (𝑣 × 𝑤) → (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))
149148anbi2d 464 . . . . . . 7 (𝑦 = (𝑣 × 𝑤) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
150149rexbidv 2495 . . . . . 6 (𝑦 = (𝑣 × 𝑤) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
151147, 150imbi12d 234 . . . . 5 (𝑦 = (𝑣 × 𝑤) → ((((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
152146, 151ralrnmpo 6033 . . . 4 (∀𝑣𝐾𝑤𝐿 (𝑣 × 𝑤) ∈ V → (∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤)))))
153145, 152ax-mp 5 . . 3 (∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣𝐾𝑤𝐿 (((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ (𝑣 × 𝑤))))
154141, 153sylibr 134 . 2 (𝜑 → ∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)))
155 topontop 14182 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1562, 155syl 14 . . . 4 (𝜑𝐾 ∈ Top)
157 topontop 14182 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
1587, 157syl 14 . . . 4 (𝜑𝐿 ∈ Top)
159 eqid 2193 . . . . 5 ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤)) = ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))
160159txval 14423 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))))
161156, 158, 160syl2anc 411 . . 3 (𝜑 → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))))
162 txtopon 14430 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
1632, 7, 162syl2anc 411 . . 3 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
1641, 161, 163, 14tgcnp 14377 . 2 (𝜑 → ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷) ↔ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑌 × 𝑍) ∧ ∀𝑦 ∈ ran (𝑣𝐾, 𝑤𝐿 ↦ (𝑣 × 𝑤))(((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)‘𝐷) ∈ 𝑦 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) “ 𝑧) ⊆ 𝑦)))))
16513, 154, 164mpbir2and 946 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  cin 3152  wss 3153  cop 3621  cmpt 4090   × cxp 4657  dom cdm 4659  ran crn 4660  cima 4662  Fun wfun 5248  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  topGenctg 12865  Topctop 14165  TopOnctopon 14178   CnP ccnp 14354   ×t ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cnp 14357  df-tx 14421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator