| Step | Hyp | Ref
 | Expression | 
| 1 |   | txcnp.4 | 
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 |   | txcnp.5 | 
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | 
| 3 |   | txcnp.8 | 
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) | 
| 4 |   | cnpf2 14443 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) | 
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) | 
| 6 | 5 | fvmptelcdm 5715 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | 
| 7 |   | txcnp.6 | 
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | 
| 8 |   | txcnp.9 | 
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) | 
| 9 |   | cnpf2 14443 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) | 
| 10 | 1, 7, 8, 9 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) | 
| 11 | 10 | fvmptelcdm 5715 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑍) | 
| 12 | 6, 11 | opelxpd 4696 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑌 × 𝑍)) | 
| 13 | 12 | fmpttd 5717 | 
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑌 × 𝑍)) | 
| 14 |   | txcnp.7 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑋) | 
| 15 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | 
| 16 | 12 | elexd 2776 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) | 
| 17 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | 
| 18 | 17 | fvmpt2 5645 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 〈𝐴, 𝐵〉 ∈ V) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈𝐴, 𝐵〉) | 
| 19 | 15, 16, 18 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈𝐴, 𝐵〉) | 
| 20 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | 
| 21 | 20 | fvmpt2 5645 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) | 
| 22 | 15, 6, 21 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) | 
| 23 |   | eqid 2196 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | 
| 24 | 23 | fvmpt2 5645 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑍) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 25 | 15, 11, 24 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 26 | 22, 25 | opeq12d 3816 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) | 
| 27 | 19, 26 | eqtr4d 2232 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) | 
| 28 | 27 | ralrimiva 2570 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) | 
| 29 |   | nffvmpt1 5569 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) | 
| 30 |   | nffvmpt1 5569 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) | 
| 31 |   | nffvmpt1 5569 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) | 
| 32 | 30, 31 | nfop 3824 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 | 
| 33 | 29, 32 | nfeq 2347 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 | 
| 34 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷)) | 
| 35 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) | 
| 36 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)) | 
| 37 | 35, 36 | opeq12d 3816 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝐷 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉) | 
| 38 | 34, 37 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐷 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉)) | 
| 39 | 33, 38 | rspc 2862 | 
. . . . . . . . 9
⊢ (𝐷 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉)) | 
| 40 | 14, 28, 39 | sylc 62 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉) | 
| 41 | 40 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) ↔ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤))) | 
| 42 | 41 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) ↔ 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤))) | 
| 43 | 1 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 44 | 2 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 45 | 14 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐷 ∈ 𝑋) | 
| 46 | 3 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) | 
| 47 |   | simplrl 535 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝑣 ∈ 𝐾) | 
| 48 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣) | 
| 49 |   | icnpimaex 14447 | 
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐷 ∈ 𝑋) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷) ∧ 𝑣 ∈ 𝐾 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣)) → ∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣)) | 
| 50 | 43, 44, 45, 46, 47, 48, 49 | syl33anc 1264 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣)) | 
| 51 | 7 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝐿 ∈ (TopOn‘𝑍)) | 
| 52 | 8 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) | 
| 53 |   | simplrr 536 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → 𝑤 ∈ 𝐿) | 
| 54 |   | simprr 531 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) | 
| 55 |   | icnpimaex 14447 | 
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ 𝐷 ∈ 𝑋) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷) ∧ 𝑤 ∈ 𝐿 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) | 
| 56 | 43, 51, 45, 52, 53, 54, 55 | syl33anc 1264 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) | 
| 57 | 50, 56 | jca 306 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) → (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) | 
| 58 | 57 | ex 115 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤) → (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) | 
| 59 |   | opelxp 4693 | 
. . . . . . 7
⊢
(〈((𝑥 ∈
𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤) ↔ (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷) ∈ 𝑤)) | 
| 60 |   | reeanv 2667 | 
. . . . . . 7
⊢
(∃𝑟 ∈
𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) ↔ (∃𝑟 ∈ 𝐽 (𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ ∃𝑠 ∈ 𝐽 (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) | 
| 61 | 58, 59, 60 | 3imtr4g 205 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝐷)〉 ∈ (𝑣 × 𝑤) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) | 
| 62 | 42, 61 | sylbid 150 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)))) | 
| 63 |   | an4 586 | 
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) ↔ ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) | 
| 64 |   | elin 3346 | 
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (𝑟 ∩ 𝑠) ↔ (𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠)) | 
| 65 | 64 | biimpri 133 | 
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) → 𝐷 ∈ (𝑟 ∩ 𝑠)) | 
| 66 | 65 | a1i 9 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) → 𝐷 ∈ (𝑟 ∩ 𝑠))) | 
| 67 |   | simpl 109 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → 𝑟 ∈ 𝐽) | 
| 68 |   | toponss 14262 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑟 ∈ 𝐽) → 𝑟 ⊆ 𝑋) | 
| 69 | 1, 67, 68 | syl2an 289 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → 𝑟 ⊆ 𝑋) | 
| 70 |   | ssinss1 3392 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ⊆ 𝑋 → (𝑟 ∩ 𝑠) ⊆ 𝑋) | 
| 71 | 70 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (𝑟 ∩ 𝑠) ⊆ 𝑋) | 
| 72 | 71 | sselda 3183 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑋) | 
| 73 | 28 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉) | 
| 74 |   | nffvmpt1 5569 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) | 
| 75 |   | nffvmpt1 5569 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) | 
| 76 |   | nffvmpt1 5569 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) | 
| 77 | 75, 76 | nfop 3824 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 | 
| 78 | 74, 77 | nfeq 2347 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 | 
| 79 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡)) | 
| 80 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡)) | 
| 81 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)) | 
| 82 | 80, 81 | opeq12d 3816 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉) | 
| 83 | 79, 82 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑡 → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉)) | 
| 84 | 78, 83 | rspc 2862 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑥) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑥)〉 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉)) | 
| 85 | 72, 73, 84 | sylc 62 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) = 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉) | 
| 86 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ (𝑟 ∩ 𝑠)) | 
| 87 | 86 | elin1d 3352 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑟) | 
| 88 | 5 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) | 
| 89 | 88 | ffund 5411 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → Fun (𝑥 ∈ 𝑋 ↦ 𝐴)) | 
| 90 | 71 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ 𝑋) | 
| 91 | 88 | fdmd 5414 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) | 
| 92 | 90, 91 | sseqtrrd 3222 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) | 
| 93 | 92, 86 | sseldd 3184 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) | 
| 94 |   | funfvima 5794 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) ∧ 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) → (𝑡 ∈ 𝑟 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟))) | 
| 95 | 89, 93, 94 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑡 ∈ 𝑟 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟))) | 
| 96 | 87, 95 | mpd 13 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟)) | 
| 97 | 86 | elin2d 3353 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ 𝑠) | 
| 98 | 10 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) | 
| 99 | 98 | ffund 5411 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → Fun (𝑥 ∈ 𝑋 ↦ 𝐵)) | 
| 100 | 98 | fdmd 5414 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | 
| 101 | 90, 100 | sseqtrrd 3222 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) | 
| 102 | 101, 86 | sseldd 3184 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) | 
| 103 |   | funfvima 5794 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐵) ∧ 𝑡 ∈ dom (𝑥 ∈ 𝑋 ↦ 𝐵)) → (𝑡 ∈ 𝑠 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 104 | 99, 102, 103 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → (𝑡 ∈ 𝑠 → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 105 | 97, 104 | mpd 13 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡) ∈ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) | 
| 106 | 96, 105 | opelxpd 4696 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → 〈((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡), ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑡)〉 ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 107 | 85, 106 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ⊆ 𝑋) ∧ 𝑡 ∈ (𝑟 ∩ 𝑠)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 108 | 107 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 109 | 13 | ffund 5411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) | 
| 110 | 109 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → Fun (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) | 
| 111 | 13 | fdmd 5414 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = 𝑋) | 
| 112 | 111 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = 𝑋) | 
| 113 | 71, 112 | sseqtrrd 3222 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) | 
| 114 |   | funimass4 5611 | 
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∧ (𝑟 ∩ 𝑠) ⊆ dom (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)))) | 
| 115 | 110, 113,
114 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ↔ ∀𝑡 ∈ (𝑟 ∩ 𝑠)((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝑡) ∈ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)))) | 
| 116 | 108, 115 | mpbird 167 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 117 | 69, 116 | syldan 282 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 118 | 117 | adantlr 477 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠))) | 
| 119 |   | xpss12 4770 | 
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤)) | 
| 120 |   | sstr2 3190 | 
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) × ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠)) ⊆ (𝑣 × 𝑤) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) | 
| 121 | 118, 119,
120 | syl2im 38 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → ((((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) | 
| 122 | 66, 121 | anim12d 335 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠) ∧ (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) | 
| 123 | 63, 122 | biimtrid 152 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) | 
| 124 |   | topontop 14250 | 
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 125 | 1, 124 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ Top) | 
| 126 |   | inopn 14239 | 
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → (𝑟 ∩ 𝑠) ∈ 𝐽) | 
| 127 | 126 | 3expb 1206 | 
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) | 
| 128 | 125, 127 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) | 
| 129 | 128 | adantlr 477 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (𝑟 ∩ 𝑠) ∈ 𝐽) | 
| 130 | 123, 129 | jctild 316 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) ∧ (𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽)) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))))) | 
| 131 | 130 | expimpd 363 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) ∧ ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) → ((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))))) | 
| 132 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 ∩ 𝑠) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑟 ∩ 𝑠))) | 
| 133 |   | imaeq2 5005 | 
. . . . . . . . . . 11
⊢ (𝑧 = (𝑟 ∩ 𝑠) → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) = ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠))) | 
| 134 | 133 | sseq1d 3212 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝑟 ∩ 𝑠) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤) ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) | 
| 135 | 132, 134 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑧 = (𝑟 ∩ 𝑠) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)) ↔ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤)))) | 
| 136 | 135 | rspcev 2868 | 
. . . . . . . 8
⊢ (((𝑟 ∩ 𝑠) ∈ 𝐽 ∧ (𝐷 ∈ (𝑟 ∩ 𝑠) ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ (𝑟 ∩ 𝑠)) ⊆ (𝑣 × 𝑤))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))) | 
| 137 | 131, 136 | syl6 33 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) ∧ ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 138 | 137 | expd 258 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → ((𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽) → (((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) | 
| 139 | 138 | rexlimdvv 2621 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (∃𝑟 ∈ 𝐽 ∃𝑠 ∈ 𝐽 ((𝐷 ∈ 𝑟 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑟) ⊆ 𝑣) ∧ (𝐷 ∈ 𝑠 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐵) “ 𝑠) ⊆ 𝑤)) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 140 | 62, 139 | syld 45 | 
. . . 4
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿)) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 141 | 140 | ralrimivva 2579 | 
. . 3
⊢ (𝜑 → ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 142 |   | vex 2766 | 
. . . . . 6
⊢ 𝑣 ∈ V | 
| 143 |   | vex 2766 | 
. . . . . 6
⊢ 𝑤 ∈ V | 
| 144 | 142, 143 | xpex 4778 | 
. . . . 5
⊢ (𝑣 × 𝑤) ∈ V | 
| 145 | 144 | rgen2w 2553 | 
. . . 4
⊢
∀𝑣 ∈
𝐾 ∀𝑤 ∈ 𝐿 (𝑣 × 𝑤) ∈ V | 
| 146 |   | eqid 2196 | 
. . . . 5
⊢ (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) = (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) | 
| 147 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑦 = (𝑣 × 𝑤) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤))) | 
| 148 |   | sseq2 3207 | 
. . . . . . . 8
⊢ (𝑦 = (𝑣 × 𝑤) → (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))) | 
| 149 | 148 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑦 = (𝑣 × 𝑤) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦) ↔ (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 150 | 149 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑦 = (𝑣 × 𝑤) → (∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 151 | 147, 150 | imbi12d 234 | 
. . . . 5
⊢ (𝑦 = (𝑣 × 𝑤) → ((((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) | 
| 152 | 146, 151 | ralrnmpo 6037 | 
. . . 4
⊢
(∀𝑣 ∈
𝐾 ∀𝑤 ∈ 𝐿 (𝑣 × 𝑤) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤))))) | 
| 153 | 145, 152 | ax-mp 5 | 
. . 3
⊢
(∀𝑦 ∈
ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦)) ↔ ∀𝑣 ∈ 𝐾 ∀𝑤 ∈ 𝐿 (((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ (𝑣 × 𝑤) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ (𝑣 × 𝑤)))) | 
| 154 | 141, 153 | sylibr 134 | 
. 2
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦))) | 
| 155 |   | topontop 14250 | 
. . . . 5
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | 
| 156 | 2, 155 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 157 |   | topontop 14250 | 
. . . . 5
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | 
| 158 | 7, 157 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐿 ∈ Top) | 
| 159 |   | eqid 2196 | 
. . . . 5
⊢ ran
(𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) = ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)) | 
| 160 | 159 | txval 14491 | 
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)))) | 
| 161 | 156, 158,
160 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝐾 ×t 𝐿) = (topGen‘ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤)))) | 
| 162 |   | txtopon 14498 | 
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) | 
| 163 | 2, 7, 162 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) | 
| 164 | 1, 161, 163, 14 | tgcnp 14445 | 
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷) ↔ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉):𝑋⟶(𝑌 × 𝑍) ∧ ∀𝑦 ∈ ran (𝑣 ∈ 𝐾, 𝑤 ∈ 𝐿 ↦ (𝑣 × 𝑤))(((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)‘𝐷) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) “ 𝑧) ⊆ 𝑦))))) | 
| 165 | 13, 154, 164 | mpbir2and 946 | 
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷)) |