Step | Hyp | Ref
| Expression |
1 | | eqid 2177 |
. . . 4
β’ ran
(π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)) = ran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)) |
2 | 1 | txval 13840 |
. . 3
β’ ((π½ β π β§ πΎ β π) β (π½ Γt πΎ) = (topGenβran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)))) |
3 | 2 | eleq2d 2247 |
. 2
β’ ((π½ β π β§ πΎ β π) β (π β (π½ Γt πΎ) β π β (topGenβran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))))) |
4 | 1 | txbasex 13842 |
. . . 4
β’ ((π½ β π β§ πΎ β π) β ran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)) β V) |
5 | | eltg2b 13639 |
. . . 4
β’ (ran
(π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)) β V β (π β (topGenβran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))) β βπ β π βπ§ β ran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))(π β π§ β§ π§ β π))) |
6 | 4, 5 | syl 14 |
. . 3
β’ ((π½ β π β§ πΎ β π) β (π β (topGenβran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))) β βπ β π βπ§ β ran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))(π β π§ β§ π§ β π))) |
7 | | vex 2742 |
. . . . . . 7
β’ π₯ β V |
8 | | vex 2742 |
. . . . . . 7
β’ π¦ β V |
9 | 7, 8 | xpex 4743 |
. . . . . 6
β’ (π₯ Γ π¦) β V |
10 | 9 | rgen2w 2533 |
. . . . 5
β’
βπ₯ β
π½ βπ¦ β πΎ (π₯ Γ π¦) β V |
11 | | eqid 2177 |
. . . . . 6
β’ (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)) = (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦)) |
12 | | eleq2 2241 |
. . . . . . 7
β’ (π§ = (π₯ Γ π¦) β (π β π§ β π β (π₯ Γ π¦))) |
13 | | sseq1 3180 |
. . . . . . 7
β’ (π§ = (π₯ Γ π¦) β (π§ β π β (π₯ Γ π¦) β π)) |
14 | 12, 13 | anbi12d 473 |
. . . . . 6
β’ (π§ = (π₯ Γ π¦) β ((π β π§ β§ π§ β π) β (π β (π₯ Γ π¦) β§ (π₯ Γ π¦) β π))) |
15 | 11, 14 | rexrnmpo 5992 |
. . . . 5
β’
(βπ₯ β
π½ βπ¦ β πΎ (π₯ Γ π¦) β V β (βπ§ β ran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))(π β π§ β§ π§ β π) β βπ₯ β π½ βπ¦ β πΎ (π β (π₯ Γ π¦) β§ (π₯ Γ π¦) β π))) |
16 | 10, 15 | ax-mp 5 |
. . . 4
β’
(βπ§ β ran
(π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))(π β π§ β§ π§ β π) β βπ₯ β π½ βπ¦ β πΎ (π β (π₯ Γ π¦) β§ (π₯ Γ π¦) β π)) |
17 | 16 | ralbii 2483 |
. . 3
β’
(βπ β
π βπ§ β ran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))(π β π§ β§ π§ β π) β βπ β π βπ₯ β π½ βπ¦ β πΎ (π β (π₯ Γ π¦) β§ (π₯ Γ π¦) β π)) |
18 | 6, 17 | bitrdi 196 |
. 2
β’ ((π½ β π β§ πΎ β π) β (π β (topGenβran (π₯ β π½, π¦ β πΎ β¦ (π₯ Γ π¦))) β βπ β π βπ₯ β π½ βπ¦ β πΎ (π β (π₯ Γ π¦) β§ (π₯ Γ π¦) β π))) |
19 | 3, 18 | bitrd 188 |
1
β’ ((π½ β π β§ πΎ β π) β (π β (π½ Γt πΎ) β βπ β π βπ₯ β π½ βπ¦ β πΎ (π β (π₯ Γ π¦) β§ (π₯ Γ π¦) β π))) |