![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mprg | GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: reximia 2589 rmoimia 2962 iuneq2i 3930 iineq2i 3931 dfiun2 3946 dfiin2 3947 dfiun3 4921 dfiin3 4922 cnviinm 5207 ixpintm 6779 sumeq2i 11507 prodeq2i 11705 2sqlem1 15201 bj-omtrans 15448 |
Copyright terms: Public domain | W3C validator |