ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2w Unicode version

Theorem rgen2w 2526
Description: Generalization rule for restricted quantification. Note that  x and  y needn't be distinct. (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rgenw.1  |-  ph
Assertion
Ref Expression
rgen2w  |-  A. x  e.  A  A. y  e.  B  ph

Proof of Theorem rgen2w
StepHypRef Expression
1 rgenw.1 . . 3  |-  ph
21rgenw 2525 . 2  |-  A. y  e.  B  ph
32rgenw 2525 1  |-  A. x  e.  A  A. y  e.  B  ph
Colors of variables: wff set class
Syntax hints:   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-ral 2453
This theorem is referenced by:  fnmpoi  6183  ixxf  9855  fzf  9969  rexfiuz  10953  eltx  13053  txcnp  13065  txcnmpt  13067  txrest  13070  txlm  13073
  Copyright terms: Public domain W3C validator