ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txrest GIF version

Theorem txrest 12916
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txrest (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))

Proof of Theorem txrest
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . . . 6 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
21txval 12895 . . . . 5 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
32adantr 274 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
43oveq1d 5857 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
51txbasex 12897 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V)
6 xpexg 4718 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ∈ V)
7 tgrest 12809 . . . 4 ((ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V ∧ (𝐴 × 𝐵) ∈ V) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
85, 6, 7syl2an 287 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
9 elrest 12563 . . . . . . . 8 ((ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V ∧ (𝐴 × 𝐵) ∈ V) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
105, 6, 9syl2an 287 . . . . . . 7 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
11 vex 2729 . . . . . . . . . . 11 𝑟 ∈ V
1211inex1 4116 . . . . . . . . . 10 (𝑟𝐴) ∈ V
1312a1i 9 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑟𝑅) → (𝑟𝐴) ∈ V)
14 elrest 12563 . . . . . . . . . 10 ((𝑅𝑉𝐴𝑋) → (𝑢 ∈ (𝑅t 𝐴) ↔ ∃𝑟𝑅 𝑢 = (𝑟𝐴)))
1514ad2ant2r 501 . . . . . . . . 9 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑢 ∈ (𝑅t 𝐴) ↔ ∃𝑟𝑅 𝑢 = (𝑟𝐴)))
16 xpeq1 4618 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐴) → (𝑢 × 𝑣) = ((𝑟𝐴) × 𝑣))
1716eqeq2d 2177 . . . . . . . . . . 11 (𝑢 = (𝑟𝐴) → (𝑥 = (𝑢 × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × 𝑣)))
1817rexbidv 2467 . . . . . . . . . 10 (𝑢 = (𝑟𝐴) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑣 ∈ (𝑆t 𝐵)𝑥 = ((𝑟𝐴) × 𝑣)))
19 vex 2729 . . . . . . . . . . . . 13 𝑠 ∈ V
2019inex1 4116 . . . . . . . . . . . 12 (𝑠𝐵) ∈ V
2120a1i 9 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑠𝑆) → (𝑠𝐵) ∈ V)
22 elrest 12563 . . . . . . . . . . . 12 ((𝑆𝑊𝐵𝑌) → (𝑣 ∈ (𝑆t 𝐵) ↔ ∃𝑠𝑆 𝑣 = (𝑠𝐵)))
2322ad2ant2l 500 . . . . . . . . . . 11 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑣 ∈ (𝑆t 𝐵) ↔ ∃𝑠𝑆 𝑣 = (𝑠𝐵)))
24 xpeq2 4619 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐵) → ((𝑟𝐴) × 𝑣) = ((𝑟𝐴) × (𝑠𝐵)))
2524eqeq2d 2177 . . . . . . . . . . . 12 (𝑣 = (𝑠𝐵) → (𝑥 = ((𝑟𝐴) × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2625adantl 275 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑣 = (𝑠𝐵)) → (𝑥 = ((𝑟𝐴) × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2721, 23, 26rexxfr2d 4443 . . . . . . . . . 10 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = ((𝑟𝐴) × 𝑣) ↔ ∃𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2818, 27sylan9bbr 459 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑢 = (𝑟𝐴)) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2913, 15, 28rexxfr2d 4443 . . . . . . . 8 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3011, 19xpex 4719 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
3130rgen2w 2522 . . . . . . . . 9 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
32 eqid 2165 . . . . . . . . . 10 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
33 ineq1 3316 . . . . . . . . . . . 12 (𝑤 = (𝑟 × 𝑠) → (𝑤 ∩ (𝐴 × 𝐵)) = ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)))
34 inxp 4738 . . . . . . . . . . . 12 ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)) = ((𝑟𝐴) × (𝑠𝐵))
3533, 34eqtrdi 2215 . . . . . . . . . . 11 (𝑤 = (𝑟 × 𝑠) → (𝑤 ∩ (𝐴 × 𝐵)) = ((𝑟𝐴) × (𝑠𝐵)))
3635eqeq2d 2177 . . . . . . . . . 10 (𝑤 = (𝑟 × 𝑠) → (𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3732, 36rexrnmpo 5957 . . . . . . . . 9 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3831, 37ax-mp 5 . . . . . . . 8 (∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵)))
3929, 38bitr4di 197 . . . . . . 7 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
4010, 39bitr4d 190 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)))
4140abbi2dv 2285 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) = {𝑥 ∣ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)})
42 eqid 2165 . . . . . 6 (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))
4342rnmpo 5952 . . . . 5 ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = {𝑥 ∣ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)}
4441, 43eqtr4di 2217 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) = ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)))
4544fveq2d 5490 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
464, 8, 453eqtr2d 2204 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
47 restfn 12560 . . . 4 t Fn (V × V)
48 simpll 519 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑅𝑉)
4948elexd 2739 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑅 ∈ V)
50 simprl 521 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
5150elexd 2739 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴 ∈ V)
52 fnovex 5875 . . . 4 (( ↾t Fn (V × V) ∧ 𝑅 ∈ V ∧ 𝐴 ∈ V) → (𝑅t 𝐴) ∈ V)
5347, 49, 51, 52mp3an2i 1332 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑅t 𝐴) ∈ V)
54 simplr 520 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑆𝑊)
5554elexd 2739 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑆 ∈ V)
56 simprr 522 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
5756elexd 2739 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵 ∈ V)
58 fnovex 5875 . . . 4 (( ↾t Fn (V × V) ∧ 𝑆 ∈ V ∧ 𝐵 ∈ V) → (𝑆t 𝐵) ∈ V)
5947, 55, 57, 58mp3an2i 1332 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑆t 𝐵) ∈ V)
60 eqid 2165 . . . 4 ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))
6160txval 12895 . . 3 (((𝑅t 𝐴) ∈ V ∧ (𝑆t 𝐵) ∈ V) → ((𝑅t 𝐴) ×t (𝑆t 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
6253, 59, 61syl2anc 409 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅t 𝐴) ×t (𝑆t 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
6346, 62eqtr4d 2201 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  Vcvv 2726  cin 3115   × cxp 4602  ran crn 4605   Fn wfn 5183  cfv 5188  (class class class)co 5842  cmpo 5844  t crest 12556  topGenctg 12571   ×t ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-rest 12558  df-topgen 12577  df-tx 12893
This theorem is referenced by:  cnmpt2res  12937  limccnp2cntop  13286
  Copyright terms: Public domain W3C validator