ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txrest GIF version

Theorem txrest 14950
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txrest (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))

Proof of Theorem txrest
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . . 6 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
21txval 14929 . . . . 5 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
32adantr 276 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
43oveq1d 6016 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
51txbasex 14931 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V)
6 xpexg 4833 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ∈ V)
7 tgrest 14843 . . . 4 ((ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V ∧ (𝐴 × 𝐵) ∈ V) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
85, 6, 7syl2an 289 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = ((topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))) ↾t (𝐴 × 𝐵)))
9 elrest 13279 . . . . . . . 8 ((ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ∈ V ∧ (𝐴 × 𝐵) ∈ V) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
105, 6, 9syl2an 289 . . . . . . 7 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
11 vex 2802 . . . . . . . . . . 11 𝑟 ∈ V
1211inex1 4218 . . . . . . . . . 10 (𝑟𝐴) ∈ V
1312a1i 9 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑟𝑅) → (𝑟𝐴) ∈ V)
14 elrest 13279 . . . . . . . . . 10 ((𝑅𝑉𝐴𝑋) → (𝑢 ∈ (𝑅t 𝐴) ↔ ∃𝑟𝑅 𝑢 = (𝑟𝐴)))
1514ad2ant2r 509 . . . . . . . . 9 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑢 ∈ (𝑅t 𝐴) ↔ ∃𝑟𝑅 𝑢 = (𝑟𝐴)))
16 xpeq1 4733 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐴) → (𝑢 × 𝑣) = ((𝑟𝐴) × 𝑣))
1716eqeq2d 2241 . . . . . . . . . . 11 (𝑢 = (𝑟𝐴) → (𝑥 = (𝑢 × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × 𝑣)))
1817rexbidv 2531 . . . . . . . . . 10 (𝑢 = (𝑟𝐴) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑣 ∈ (𝑆t 𝐵)𝑥 = ((𝑟𝐴) × 𝑣)))
19 vex 2802 . . . . . . . . . . . . 13 𝑠 ∈ V
2019inex1 4218 . . . . . . . . . . . 12 (𝑠𝐵) ∈ V
2120a1i 9 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑠𝑆) → (𝑠𝐵) ∈ V)
22 elrest 13279 . . . . . . . . . . . 12 ((𝑆𝑊𝐵𝑌) → (𝑣 ∈ (𝑆t 𝐵) ↔ ∃𝑠𝑆 𝑣 = (𝑠𝐵)))
2322ad2ant2l 508 . . . . . . . . . . 11 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑣 ∈ (𝑆t 𝐵) ↔ ∃𝑠𝑆 𝑣 = (𝑠𝐵)))
24 xpeq2 4734 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐵) → ((𝑟𝐴) × 𝑣) = ((𝑟𝐴) × (𝑠𝐵)))
2524eqeq2d 2241 . . . . . . . . . . . 12 (𝑣 = (𝑠𝐵) → (𝑥 = ((𝑟𝐴) × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2625adantl 277 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑣 = (𝑠𝐵)) → (𝑥 = ((𝑟𝐴) × 𝑣) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2721, 23, 26rexxfr2d 4556 . . . . . . . . . 10 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = ((𝑟𝐴) × 𝑣) ↔ ∃𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2818, 27sylan9bbr 463 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑢 = (𝑟𝐴)) → (∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
2913, 15, 28rexxfr2d 4556 . . . . . . . 8 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3011, 19xpex 4834 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
3130rgen2w 2586 . . . . . . . . 9 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
32 eqid 2229 . . . . . . . . . 10 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
33 ineq1 3398 . . . . . . . . . . . 12 (𝑤 = (𝑟 × 𝑠) → (𝑤 ∩ (𝐴 × 𝐵)) = ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)))
34 inxp 4856 . . . . . . . . . . . 12 ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)) = ((𝑟𝐴) × (𝑠𝐵))
3533, 34eqtrdi 2278 . . . . . . . . . . 11 (𝑤 = (𝑟 × 𝑠) → (𝑤 ∩ (𝐴 × 𝐵)) = ((𝑟𝐴) × (𝑠𝐵)))
3635eqeq2d 2241 . . . . . . . . . 10 (𝑤 = (𝑟 × 𝑠) → (𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3732, 36rexrnmpo 6120 . . . . . . . . 9 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵))))
3831, 37ax-mp 5 . . . . . . . 8 (∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵)) ↔ ∃𝑟𝑅𝑠𝑆 𝑥 = ((𝑟𝐴) × (𝑠𝐵)))
3929, 38bitr4di 198 . . . . . . 7 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣) ↔ ∃𝑤 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))𝑥 = (𝑤 ∩ (𝐴 × 𝐵))))
4010, 39bitr4d 191 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑥 ∈ (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) ↔ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)))
4140abbi2dv 2348 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) = {𝑥 ∣ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)})
42 eqid 2229 . . . . . 6 (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))
4342rnmpo 6115 . . . . 5 ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = {𝑥 ∣ ∃𝑢 ∈ (𝑅t 𝐴)∃𝑣 ∈ (𝑆t 𝐵)𝑥 = (𝑢 × 𝑣)}
4441, 43eqtr4di 2280 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵)) = ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)))
4544fveq2d 5631 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (topGen‘(ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) ↾t (𝐴 × 𝐵))) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
464, 8, 453eqtr2d 2268 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
47 restfn 13276 . . . 4 t Fn (V × V)
48 simpll 527 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑅𝑉)
4948elexd 2813 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑅 ∈ V)
50 simprl 529 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
5150elexd 2813 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴 ∈ V)
52 fnovex 6034 . . . 4 (( ↾t Fn (V × V) ∧ 𝑅 ∈ V ∧ 𝐴 ∈ V) → (𝑅t 𝐴) ∈ V)
5347, 49, 51, 52mp3an2i 1376 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑅t 𝐴) ∈ V)
54 simplr 528 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑆𝑊)
5554elexd 2813 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝑆 ∈ V)
56 simprr 531 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
5756elexd 2813 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵 ∈ V)
58 fnovex 6034 . . . 4 (( ↾t Fn (V × V) ∧ 𝑆 ∈ V ∧ 𝐵 ∈ V) → (𝑆t 𝐵) ∈ V)
5947, 55, 57, 58mp3an2i 1376 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → (𝑆t 𝐵) ∈ V)
60 eqid 2229 . . . 4 ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))
6160txval 14929 . . 3 (((𝑅t 𝐴) ∈ V ∧ (𝑆t 𝐵) ∈ V) → ((𝑅t 𝐴) ×t (𝑆t 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
6253, 59, 61syl2anc 411 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅t 𝐴) ×t (𝑆t 𝐵)) = (topGen‘ran (𝑢 ∈ (𝑅t 𝐴), 𝑣 ∈ (𝑆t 𝐵) ↦ (𝑢 × 𝑣))))
6346, 62eqtr4d 2265 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cin 3196   × cxp 4717  ran crn 4720   Fn wfn 5313  cfv 5318  (class class class)co 6001  cmpo 6003  t crest 13272  topGenctg 13287   ×t ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-rest 13274  df-topgen 13293  df-tx 14927
This theorem is referenced by:  cnmpt2res  14971  limccnp2cntop  15351
  Copyright terms: Public domain W3C validator