Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgenw | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
3 | 2 | rgen 2510 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 ∀wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: rgen2w 2513 reuun1 3389 0disj 3962 iinexgm 4115 epse 4302 xpiindim 4722 eliunxp 4724 opeliunxp2 4725 elrnmpti 4838 fnmpti 5297 mpoeq12 5878 iunex 6068 mpoex 6158 opeliunxp2f 6182 ixpssmap 6674 1domsn 6761 nneneq 6799 nqprrnd 7457 nqprdisj 7458 uzf 9436 sum0 11278 fisumcom2 11328 prod0 11475 fprodcom2fi 11516 phisum 12103 unennn 12109 tgidm 12445 tgrest 12540 txbas 12629 reldvg 13019 dvfvalap 13021 bj-indint 13477 bj-nn0suc0 13496 bj-nntrans 13497 |
Copyright terms: Public domain | W3C validator |