ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgenw GIF version

Theorem rgenw 2549
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rgenw.1 𝜑
Assertion
Ref Expression
rgenw 𝑥𝐴 𝜑

Proof of Theorem rgenw
StepHypRef Expression
1 rgenw.1 . . 3 𝜑
21a1i 9 . 2 (𝑥𝐴𝜑)
32rgen 2547 1 𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460
This theorem depends on definitions:  df-bi 117  df-ral 2477
This theorem is referenced by:  rgen2w  2550  reuun1  3442  0disj  4027  iinexgm  4184  epse  4374  xpiindim  4800  eliunxp  4802  opeliunxp2  4803  elrnmpti  4916  fnmpti  5383  mpoeq12  5979  iunex  6177  mpoex  6269  opeliunxp2f  6293  ixpssmap  6788  1domsn  6875  nneneq  6915  nqprrnd  7605  nqprdisj  7606  uzf  9598  sum0  11534  fisumcom2  11584  prod0  11731  fprodcom2fi  11772  phisum  12381  sumhashdc  12488  unennn  12557  fczpsrbag  14168  tgidm  14253  tgrest  14348  txbas  14437  reldvg  14858  dvfvalap  14860  bj-indint  15493  bj-nn0suc0  15512  bj-nntrans  15513
  Copyright terms: Public domain W3C validator