| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| 3 | 2 | rgen 2561 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2491 |
| This theorem is referenced by: rgen2w 2564 reuun1 3463 0disj 4056 iinexgm 4214 epse 4407 xpiindim 4833 eliunxp 4835 opeliunxp2 4836 elrnmpti 4950 fnmpti 5424 mpoeq12 6028 iunex 6231 mpoex 6323 opeliunxp2f 6347 ixpssmap 6842 1domsn 6939 nneneq 6979 nqprrnd 7691 nqprdisj 7692 uzf 9686 sum0 11814 fisumcom2 11864 prod0 12011 fprodcom2fi 12052 phisum 12678 sumhashdc 12785 unennn 12883 prdsvallem 13219 prdsval 13220 fczpsrbag 14548 psr1clfi 14565 tgidm 14661 tgrest 14756 txbas 14845 reldvg 15266 dvfvalap 15268 bj-indint 16066 bj-nn0suc0 16085 bj-nntrans 16086 |
| Copyright terms: Public domain | W3C validator |