| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| 3 | 2 | rgen 2559 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: rgen2w 2562 reuun1 3455 0disj 4041 iinexgm 4198 epse 4389 xpiindim 4815 eliunxp 4817 opeliunxp2 4818 elrnmpti 4931 fnmpti 5404 mpoeq12 6005 iunex 6208 mpoex 6300 opeliunxp2f 6324 ixpssmap 6819 1domsn 6914 nneneq 6954 nqprrnd 7656 nqprdisj 7657 uzf 9651 sum0 11699 fisumcom2 11749 prod0 11896 fprodcom2fi 11937 phisum 12563 sumhashdc 12670 unennn 12768 prdsvallem 13104 prdsval 13105 fczpsrbag 14433 psr1clfi 14450 tgidm 14546 tgrest 14641 txbas 14730 reldvg 15151 dvfvalap 15153 bj-indint 15867 bj-nn0suc0 15886 bj-nntrans 15887 |
| Copyright terms: Public domain | W3C validator |