| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| 3 | 2 | rgen 2550 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rgen2w 2553 reuun1 3446 0disj 4031 iinexgm 4188 epse 4378 xpiindim 4804 eliunxp 4806 opeliunxp2 4807 elrnmpti 4920 fnmpti 5389 mpoeq12 5986 iunex 6189 mpoex 6281 opeliunxp2f 6305 ixpssmap 6800 1domsn 6887 nneneq 6927 nqprrnd 7629 nqprdisj 7630 uzf 9623 sum0 11572 fisumcom2 11622 prod0 11769 fprodcom2fi 11810 phisum 12436 sumhashdc 12543 unennn 12641 prdsvallem 12976 prdsval 12977 fczpsrbag 14305 psr1clfi 14322 tgidm 14418 tgrest 14513 txbas 14602 reldvg 15023 dvfvalap 15025 bj-indint 15685 bj-nn0suc0 15704 bj-nntrans 15705 |
| Copyright terms: Public domain | W3C validator |