ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgenw GIF version

Theorem rgenw 2560
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rgenw.1 𝜑
Assertion
Ref Expression
rgenw 𝑥𝐴 𝜑

Proof of Theorem rgenw
StepHypRef Expression
1 rgenw.1 . . 3 𝜑
21a1i 9 . 2 (𝑥𝐴𝜑)
32rgen 2558 1 𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1471
This theorem depends on definitions:  df-bi 117  df-ral 2488
This theorem is referenced by:  rgen2w  2561  reuun1  3454  0disj  4040  iinexgm  4197  epse  4388  xpiindim  4814  eliunxp  4816  opeliunxp2  4817  elrnmpti  4930  fnmpti  5403  mpoeq12  6004  iunex  6207  mpoex  6299  opeliunxp2f  6323  ixpssmap  6818  1domsn  6913  nneneq  6953  nqprrnd  7655  nqprdisj  7656  uzf  9650  sum0  11670  fisumcom2  11720  prod0  11867  fprodcom2fi  11908  phisum  12534  sumhashdc  12641  unennn  12739  prdsvallem  13075  prdsval  13076  fczpsrbag  14404  psr1clfi  14421  tgidm  14517  tgrest  14612  txbas  14701  reldvg  15122  dvfvalap  15124  bj-indint  15829  bj-nn0suc0  15848  bj-nntrans  15849
  Copyright terms: Public domain W3C validator