| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| 3 | 2 | rgen 2558 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 |
| This theorem depends on definitions: df-bi 117 df-ral 2488 |
| This theorem is referenced by: rgen2w 2561 reuun1 3454 0disj 4040 iinexgm 4197 epse 4388 xpiindim 4814 eliunxp 4816 opeliunxp2 4817 elrnmpti 4930 fnmpti 5403 mpoeq12 6004 iunex 6207 mpoex 6299 opeliunxp2f 6323 ixpssmap 6818 1domsn 6913 nneneq 6953 nqprrnd 7655 nqprdisj 7656 uzf 9650 sum0 11670 fisumcom2 11720 prod0 11867 fprodcom2fi 11908 phisum 12534 sumhashdc 12641 unennn 12739 prdsvallem 13075 prdsval 13076 fczpsrbag 14404 psr1clfi 14421 tgidm 14517 tgrest 14612 txbas 14701 reldvg 15122 dvfvalap 15124 bj-indint 15829 bj-nn0suc0 15848 bj-nntrans 15849 |
| Copyright terms: Public domain | W3C validator |