Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgenw | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
3 | 2 | rgen 2523 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: rgen2w 2526 reuun1 3409 0disj 3986 iinexgm 4140 epse 4327 xpiindim 4748 eliunxp 4750 opeliunxp2 4751 elrnmpti 4864 fnmpti 5326 mpoeq12 5913 iunex 6102 mpoex 6193 opeliunxp2f 6217 ixpssmap 6710 1domsn 6797 nneneq 6835 nqprrnd 7505 nqprdisj 7506 uzf 9490 sum0 11351 fisumcom2 11401 prod0 11548 fprodcom2fi 11589 phisum 12194 sumhashdc 12299 unennn 12352 tgidm 12868 tgrest 12963 txbas 13052 reldvg 13442 dvfvalap 13444 bj-indint 13966 bj-nn0suc0 13985 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |