| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| 3 | 2 | rgen 2550 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rgen2w 2553 reuun1 3446 0disj 4031 iinexgm 4188 epse 4378 xpiindim 4804 eliunxp 4806 opeliunxp2 4807 elrnmpti 4920 fnmpti 5389 mpoeq12 5986 iunex 6189 mpoex 6281 opeliunxp2f 6305 ixpssmap 6800 1domsn 6887 nneneq 6927 nqprrnd 7627 nqprdisj 7628 uzf 9621 sum0 11570 fisumcom2 11620 prod0 11767 fprodcom2fi 11808 phisum 12434 sumhashdc 12541 unennn 12639 prdsvallem 12974 prdsval 12975 fczpsrbag 14301 psr1clfi 14316 tgidm 14394 tgrest 14489 txbas 14578 reldvg 14999 dvfvalap 15001 bj-indint 15661 bj-nn0suc0 15680 bj-nntrans 15681 |
| Copyright terms: Public domain | W3C validator |