![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgenw | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
3 | 2 | rgen 2428 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ∀wral 2359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1383 |
This theorem depends on definitions: df-bi 115 df-ral 2364 |
This theorem is referenced by: rgen2w 2431 reuun1 3281 0disj 3840 iinexgm 3988 epse 4167 xpiindim 4569 eliunxp 4571 opeliunxp2 4572 elrnmpti 4684 fnmpti 5136 mpt2eq12 5701 iunex 5886 mpt2ex 5972 opeliunxp2f 5995 1domsn 6525 nneneq 6563 nqprrnd 7092 nqprdisj 7093 uzf 9012 sum0 10767 fisumcom2 10819 unennn 11475 bj-indint 11709 bj-nn0suc0 11728 bj-nntrans 11729 |
Copyright terms: Public domain | W3C validator |