![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgenw | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgenw | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
3 | 2 | rgen 2547 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: rgen2w 2550 reuun1 3442 0disj 4027 iinexgm 4184 epse 4374 xpiindim 4800 eliunxp 4802 opeliunxp2 4803 elrnmpti 4916 fnmpti 5383 mpoeq12 5979 iunex 6177 mpoex 6269 opeliunxp2f 6293 ixpssmap 6788 1domsn 6875 nneneq 6915 nqprrnd 7605 nqprdisj 7606 uzf 9598 sum0 11534 fisumcom2 11584 prod0 11731 fprodcom2fi 11772 phisum 12381 sumhashdc 12488 unennn 12557 fczpsrbag 14168 tgidm 14253 tgrest 14348 txbas 14437 reldvg 14858 dvfvalap 14860 bj-indint 15493 bj-nn0suc0 15512 bj-nntrans 15513 |
Copyright terms: Public domain | W3C validator |