Step | Hyp | Ref
| Expression |
1 | | txcnmpt.1 |
. . . . . . 7
⊢ 𝑊 = ∪
𝑈 |
2 | | eqid 2157 |
. . . . . . 7
⊢ ∪ 𝑅 =
∪ 𝑅 |
3 | 1, 2 | cnf 12564 |
. . . . . 6
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:𝑊⟶∪ 𝑅) |
4 | 3 | adantr 274 |
. . . . 5
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹:𝑊⟶∪ 𝑅) |
5 | 4 | ffvelrnda 5599 |
. . . 4
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝐹‘𝑥) ∈ ∪ 𝑅) |
6 | | eqid 2157 |
. . . . . . 7
⊢ ∪ 𝑆 =
∪ 𝑆 |
7 | 1, 6 | cnf 12564 |
. . . . . 6
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:𝑊⟶∪ 𝑆) |
8 | 7 | adantl 275 |
. . . . 5
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺:𝑊⟶∪ 𝑆) |
9 | 8 | ffvelrnda 5599 |
. . . 4
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝐺‘𝑥) ∈ ∪ 𝑆) |
10 | 5, 9 | opelxpd 4616 |
. . 3
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥 ∈ 𝑊) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (∪
𝑅 × ∪ 𝑆)) |
11 | | txcnmpt.2 |
. . 3
⊢ 𝐻 = (𝑥 ∈ 𝑊 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
12 | 10, 11 | fmptd 5618 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻:𝑊⟶(∪ 𝑅 × ∪ 𝑆)) |
13 | 11 | mptpreima 5076 |
. . . . . 6
⊢ (◡𝐻 “ (𝑟 × 𝑠)) = {𝑥 ∈ 𝑊 ∣ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑟 × 𝑠)} |
14 | 4 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐹:𝑊⟶∪ 𝑅) |
15 | 14 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → 𝐹:𝑊⟶∪ 𝑅) |
16 | | ffn 5316 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑊⟶∪ 𝑅 → 𝐹 Fn 𝑊) |
17 | | elpreima 5583 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑊 → (𝑥 ∈ (◡𝐹 “ 𝑟) ↔ (𝑥 ∈ 𝑊 ∧ (𝐹‘𝑥) ∈ 𝑟))) |
18 | 15, 16, 17 | 3syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ (◡𝐹 “ 𝑟) ↔ (𝑥 ∈ 𝑊 ∧ (𝐹‘𝑥) ∈ 𝑟))) |
19 | | ibar 299 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑊 → ((𝐹‘𝑥) ∈ 𝑟 ↔ (𝑥 ∈ 𝑊 ∧ (𝐹‘𝑥) ∈ 𝑟))) |
20 | 19 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → ((𝐹‘𝑥) ∈ 𝑟 ↔ (𝑥 ∈ 𝑊 ∧ (𝐹‘𝑥) ∈ 𝑟))) |
21 | 18, 20 | bitr4d 190 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ (◡𝐹 “ 𝑟) ↔ (𝐹‘𝑥) ∈ 𝑟)) |
22 | 8 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → 𝐺:𝑊⟶∪ 𝑆) |
23 | | ffn 5316 |
. . . . . . . . . . . 12
⊢ (𝐺:𝑊⟶∪ 𝑆 → 𝐺 Fn 𝑊) |
24 | | elpreima 5583 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝑊 → (𝑥 ∈ (◡𝐺 “ 𝑠) ↔ (𝑥 ∈ 𝑊 ∧ (𝐺‘𝑥) ∈ 𝑠))) |
25 | 22, 23, 24 | 3syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ (◡𝐺 “ 𝑠) ↔ (𝑥 ∈ 𝑊 ∧ (𝐺‘𝑥) ∈ 𝑠))) |
26 | | ibar 299 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑊 → ((𝐺‘𝑥) ∈ 𝑠 ↔ (𝑥 ∈ 𝑊 ∧ (𝐺‘𝑥) ∈ 𝑠))) |
27 | 26 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → ((𝐺‘𝑥) ∈ 𝑠 ↔ (𝑥 ∈ 𝑊 ∧ (𝐺‘𝑥) ∈ 𝑠))) |
28 | 25, 27 | bitr4d 190 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ (◡𝐺 “ 𝑠) ↔ (𝐺‘𝑥) ∈ 𝑠)) |
29 | 21, 28 | anbi12d 465 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → ((𝑥 ∈ (◡𝐹 “ 𝑟) ∧ 𝑥 ∈ (◡𝐺 “ 𝑠)) ↔ ((𝐹‘𝑥) ∈ 𝑟 ∧ (𝐺‘𝑥) ∈ 𝑠))) |
30 | | elin 3290 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ↔ (𝑥 ∈ (◡𝐹 “ 𝑟) ∧ 𝑥 ∈ (◡𝐺 “ 𝑠))) |
31 | | opelxp 4613 |
. . . . . . . . 9
⊢
(〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑟 × 𝑠) ↔ ((𝐹‘𝑥) ∈ 𝑟 ∧ (𝐺‘𝑥) ∈ 𝑠)) |
32 | 29, 30, 31 | 3bitr4g 222 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ↔ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑟 × 𝑠))) |
33 | 32 | rabbi2dva 3315 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑊 ∩ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) = {𝑥 ∈ 𝑊 ∣ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑟 × 𝑠)}) |
34 | | inss1 3327 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ⊆ (◡𝐹 “ 𝑟) |
35 | | cnvimass 4946 |
. . . . . . . . . 10
⊢ (◡𝐹 “ 𝑟) ⊆ dom 𝐹 |
36 | 34, 35 | sstri 3137 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ⊆ dom 𝐹 |
37 | 36, 14 | fssdm 5331 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ⊆ 𝑊) |
38 | | sseqin2 3326 |
. . . . . . . 8
⊢ (((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ⊆ 𝑊 ↔ (𝑊 ∩ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) = ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) |
39 | 37, 38 | sylib 121 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑊 ∩ ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) = ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) |
40 | 33, 39 | eqtr3d 2192 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → {𝑥 ∈ 𝑊 ∣ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑟 × 𝑠)} = ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) |
41 | 13, 40 | syl5eq 2202 |
. . . . 5
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (◡𝐻 “ (𝑟 × 𝑠)) = ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠))) |
42 | | cntop1 12561 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑈 ∈ Top) |
43 | 42 | adantl 275 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ Top) |
44 | 43 | adantr 274 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑈 ∈ Top) |
45 | | cnima 12580 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝑟 ∈ 𝑅) → (◡𝐹 “ 𝑟) ∈ 𝑈) |
46 | 45 | ad2ant2r 501 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (◡𝐹 “ 𝑟) ∈ 𝑈) |
47 | | cnima 12580 |
. . . . . . 7
⊢ ((𝐺 ∈ (𝑈 Cn 𝑆) ∧ 𝑠 ∈ 𝑆) → (◡𝐺 “ 𝑠) ∈ 𝑈) |
48 | 47 | ad2ant2l 500 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (◡𝐺 “ 𝑠) ∈ 𝑈) |
49 | | inopn 12361 |
. . . . . 6
⊢ ((𝑈 ∈ Top ∧ (◡𝐹 “ 𝑟) ∈ 𝑈 ∧ (◡𝐺 “ 𝑠) ∈ 𝑈) → ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ∈ 𝑈) |
50 | 44, 46, 48, 49 | syl3anc 1220 |
. . . . 5
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((◡𝐹 “ 𝑟) ∩ (◡𝐺 “ 𝑠)) ∈ 𝑈) |
51 | 41, 50 | eqeltrd 2234 |
. . . 4
⊢ (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (◡𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈) |
52 | 51 | ralrimivva 2539 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑟 ∈ 𝑅 ∀𝑠 ∈ 𝑆 (◡𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈) |
53 | | vex 2715 |
. . . . . 6
⊢ 𝑟 ∈ V |
54 | | vex 2715 |
. . . . . 6
⊢ 𝑠 ∈ V |
55 | 53, 54 | xpex 4698 |
. . . . 5
⊢ (𝑟 × 𝑠) ∈ V |
56 | 55 | rgen2w 2513 |
. . . 4
⊢
∀𝑟 ∈
𝑅 ∀𝑠 ∈ 𝑆 (𝑟 × 𝑠) ∈ V |
57 | | eqid 2157 |
. . . . 5
⊢ (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠)) = (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠)) |
58 | | imaeq2 4921 |
. . . . . 6
⊢ (𝑧 = (𝑟 × 𝑠) → (◡𝐻 “ 𝑧) = (◡𝐻 “ (𝑟 × 𝑠))) |
59 | 58 | eleq1d 2226 |
. . . . 5
⊢ (𝑧 = (𝑟 × 𝑠) → ((◡𝐻 “ 𝑧) ∈ 𝑈 ↔ (◡𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)) |
60 | 57, 59 | ralrnmpo 5929 |
. . . 4
⊢
(∀𝑟 ∈
𝑅 ∀𝑠 ∈ 𝑆 (𝑟 × 𝑠) ∈ V → (∀𝑧 ∈ ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠))(◡𝐻 “ 𝑧) ∈ 𝑈 ↔ ∀𝑟 ∈ 𝑅 ∀𝑠 ∈ 𝑆 (◡𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)) |
61 | 56, 60 | ax-mp 5 |
. . 3
⊢
(∀𝑧 ∈
ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠))(◡𝐻 “ 𝑧) ∈ 𝑈 ↔ ∀𝑟 ∈ 𝑅 ∀𝑠 ∈ 𝑆 (◡𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈) |
62 | 52, 61 | sylibr 133 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑧 ∈ ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠))(◡𝐻 “ 𝑧) ∈ 𝑈) |
63 | 1 | toptopon 12376 |
. . . 4
⊢ (𝑈 ∈ Top ↔ 𝑈 ∈ (TopOn‘𝑊)) |
64 | 43, 63 | sylib 121 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ (TopOn‘𝑊)) |
65 | | cntop2 12562 |
. . . 4
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top) |
66 | | cntop2 12562 |
. . . 4
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top) |
67 | | eqid 2157 |
. . . . 5
⊢ ran
(𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠)) |
68 | 67 | txval 12615 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠)))) |
69 | 65, 66, 68 | syl2an 287 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠)))) |
70 | | toptopon2 12377 |
. . . . 5
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘∪ 𝑅)) |
71 | 65, 70 | sylib 121 |
. . . 4
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ (TopOn‘∪ 𝑅)) |
72 | | toptopon2 12377 |
. . . . 5
⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘∪ 𝑆)) |
73 | 66, 72 | sylib 121 |
. . . 4
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ (TopOn‘∪ 𝑆)) |
74 | | txtopon 12622 |
. . . 4
⊢ ((𝑅 ∈ (TopOn‘∪ 𝑅)
∧ 𝑆 ∈
(TopOn‘∪ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(∪ 𝑅
× ∪ 𝑆))) |
75 | 71, 73, 74 | syl2an 287 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(∪ 𝑅
× ∪ 𝑆))) |
76 | 64, 69, 75 | tgcn 12568 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ (𝐻:𝑊⟶(∪ 𝑅 × ∪ 𝑆)
∧ ∀𝑧 ∈ ran
(𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ↦ (𝑟 × 𝑠))(◡𝐻 “ 𝑧) ∈ 𝑈))) |
77 | 12, 62, 76 | mpbir2and 929 |
1
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |