ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txcnmpt GIF version

Theorem txcnmpt 12633
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1 𝑊 = 𝑈
txcnmpt.2 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
txcnmpt ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑊
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem txcnmpt
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7 𝑊 = 𝑈
2 eqid 2157 . . . . . . 7 𝑅 = 𝑅
31, 2cnf 12564 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:𝑊 𝑅)
43adantr 274 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹:𝑊 𝑅)
54ffvelrnda 5599 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐹𝑥) ∈ 𝑅)
6 eqid 2157 . . . . . . 7 𝑆 = 𝑆
71, 6cnf 12564 . . . . . 6 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:𝑊 𝑆)
87adantl 275 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺:𝑊 𝑆)
98ffvelrnda 5599 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐺𝑥) ∈ 𝑆)
105, 9opelxpd 4616 . . 3 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑅 × 𝑆))
11 txcnmpt.2 . . 3 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1210, 11fmptd 5618 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻:𝑊⟶( 𝑅 × 𝑆))
1311mptpreima 5076 . . . . . 6 (𝐻 “ (𝑟 × 𝑠)) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)}
144adantr 274 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝐹:𝑊 𝑅)
1514adantr 274 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐹:𝑊 𝑅)
16 ffn 5316 . . . . . . . . . . . 12 (𝐹:𝑊 𝑅𝐹 Fn 𝑊)
17 elpreima 5583 . . . . . . . . . . . 12 (𝐹 Fn 𝑊 → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
1815, 16, 173syl 17 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
19 ibar 299 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2019adantl 275 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2118, 20bitr4d 190 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝐹𝑥) ∈ 𝑟))
228ad2antrr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐺:𝑊 𝑆)
23 ffn 5316 . . . . . . . . . . . 12 (𝐺:𝑊 𝑆𝐺 Fn 𝑊)
24 elpreima 5583 . . . . . . . . . . . 12 (𝐺 Fn 𝑊 → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2522, 23, 243syl 17 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
26 ibar 299 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2726adantl 275 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2825, 27bitr4d 190 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝐺𝑥) ∈ 𝑠))
2921, 28anbi12d 465 . . . . . . . . 9 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠)))
30 elin 3290 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ (𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)))
31 opelxp 4613 . . . . . . . . 9 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠))
3229, 30, 313bitr4g 222 . . . . . . . 8 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)))
3332rabbi2dva 3315 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)})
34 inss1 3327 . . . . . . . . . 10 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ (𝐹𝑟)
35 cnvimass 4946 . . . . . . . . . 10 (𝐹𝑟) ⊆ dom 𝐹
3634, 35sstri 3137 . . . . . . . . 9 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ dom 𝐹
3736, 14fssdm 5331 . . . . . . . 8 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊)
38 sseqin2 3326 . . . . . . . 8 (((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊 ↔ (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
3937, 38sylib 121 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
4033, 39eqtr3d 2192 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)} = ((𝐹𝑟) ∩ (𝐺𝑠)))
4113, 40syl5eq 2202 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) = ((𝐹𝑟) ∩ (𝐺𝑠)))
42 cntop1 12561 . . . . . . . 8 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑈 ∈ Top)
4342adantl 275 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ Top)
4443adantr 274 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝑈 ∈ Top)
45 cnima 12580 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝑟𝑅) → (𝐹𝑟) ∈ 𝑈)
4645ad2ant2r 501 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐹𝑟) ∈ 𝑈)
47 cnima 12580 . . . . . . 7 ((𝐺 ∈ (𝑈 Cn 𝑆) ∧ 𝑠𝑆) → (𝐺𝑠) ∈ 𝑈)
4847ad2ant2l 500 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐺𝑠) ∈ 𝑈)
49 inopn 12361 . . . . . 6 ((𝑈 ∈ Top ∧ (𝐹𝑟) ∈ 𝑈 ∧ (𝐺𝑠) ∈ 𝑈) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5044, 46, 48, 49syl3anc 1220 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5141, 50eqeltrd 2234 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
5251ralrimivva 2539 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
53 vex 2715 . . . . . 6 𝑟 ∈ V
54 vex 2715 . . . . . 6 𝑠 ∈ V
5553, 54xpex 4698 . . . . 5 (𝑟 × 𝑠) ∈ V
5655rgen2w 2513 . . . 4 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
57 eqid 2157 . . . . 5 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
58 imaeq2 4921 . . . . . 6 (𝑧 = (𝑟 × 𝑠) → (𝐻𝑧) = (𝐻 “ (𝑟 × 𝑠)))
5958eleq1d 2226 . . . . 5 (𝑧 = (𝑟 × 𝑠) → ((𝐻𝑧) ∈ 𝑈 ↔ (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6057, 59ralrnmpo 5929 . . . 4 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6156, 60ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
6252, 61sylibr 133 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)
631toptopon 12376 . . . 4 (𝑈 ∈ Top ↔ 𝑈 ∈ (TopOn‘𝑊))
6443, 63sylib 121 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ (TopOn‘𝑊))
65 cntop2 12562 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
66 cntop2 12562 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
67 eqid 2157 . . . . 5 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
6867txval 12615 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
6965, 66, 68syl2an 287 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
70 toptopon2 12377 . . . . 5 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
7165, 70sylib 121 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ (TopOn‘ 𝑅))
72 toptopon2 12377 . . . . 5 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
7366, 72sylib 121 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ (TopOn‘ 𝑆))
74 txtopon 12622 . . . 4 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7571, 73, 74syl2an 287 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7664, 69, 75tgcn 12568 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ (𝐻:𝑊⟶( 𝑅 × 𝑆) ∧ ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)))
7712, 62, 76mpbir2and 929 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wral 2435  {crab 2439  Vcvv 2712  cin 3101  wss 3102  cop 3563   cuni 3772  cmpt 4025   × cxp 4581  ccnv 4582  dom cdm 4583  ran crn 4584  cima 4586   Fn wfn 5162  wf 5163  cfv 5167  (class class class)co 5818  cmpo 5820  topGenctg 12326  Topctop 12355  TopOnctopon 12368   Cn ccn 12545   ×t ctx 12612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-map 6588  df-topgen 12332  df-top 12356  df-topon 12369  df-bases 12401  df-cn 12548  df-tx 12613
This theorem is referenced by:  uptx  12634  cnmpt1t  12645  cnmpt2t  12653
  Copyright terms: Public domain W3C validator