| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isarep2 | GIF version | ||
| Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5358. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| isarep2.1 | ⊢ 𝐴 ∈ V |
| isarep2.2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) |
| Ref | Expression |
|---|---|
| isarep2 | ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 4991 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) | |
| 2 | resopab 5002 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | imaeq1i 5018 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
| 4 | 1, 3 | eqtr3i 2227 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
| 5 | funopab 5305 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | isarep2.2 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) | |
| 7 | 6 | rspec 2557 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
| 8 | nfv 1550 | . . . . . . . 8 ⊢ Ⅎ𝑧𝜑 | |
| 9 | 8 | mo3 2107 | . . . . . . 7 ⊢ (∃*𝑦𝜑 ↔ ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
| 10 | 7, 9 | sylibr 134 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
| 11 | moanimv 2128 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
| 12 | 10, 11 | mpbir 146 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 13 | 5, 12 | mpgbir 1475 | . . . 4 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 14 | isarep2.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 15 | 14 | funimaex 5358 | . . . 4 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V) |
| 16 | 13, 15 | ax-mp 5 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V |
| 17 | 4, 16 | eqeltri 2277 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ∈ V |
| 18 | 17 | isseti 2779 | 1 ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 = wceq 1372 ∃wex 1514 [wsb 1784 ∃*wmo 2054 ∈ wcel 2175 ∀wral 2483 Vcvv 2771 {copab 4103 ↾ cres 4676 “ cima 4677 Fun wfun 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-fun 5272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |