| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isarep2 | GIF version | ||
| Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5368. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| isarep2.1 | ⊢ 𝐴 ∈ V |
| isarep2.2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) |
| Ref | Expression |
|---|---|
| isarep2 | ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 5001 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) | |
| 2 | resopab 5012 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | imaeq1i 5028 | . . . 4 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
| 4 | 1, 3 | eqtr3i 2229 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) |
| 5 | funopab 5315 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | isarep2.2 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧) | |
| 7 | 6 | rspec 2559 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
| 8 | nfv 1552 | . . . . . . . 8 ⊢ Ⅎ𝑧𝜑 | |
| 9 | 8 | mo3 2109 | . . . . . . 7 ⊢ (∃*𝑦𝜑 ↔ ∀𝑦∀𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)) |
| 10 | 7, 9 | sylibr 134 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
| 11 | moanimv 2130 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
| 12 | 10, 11 | mpbir 146 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 13 | 5, 12 | mpgbir 1477 | . . . 4 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 14 | isarep2.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 15 | 14 | funimaex 5368 | . . . 4 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V) |
| 16 | 13, 15 | ax-mp 5 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} “ 𝐴) ∈ V |
| 17 | 4, 16 | eqeltri 2279 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ∈ V |
| 18 | 17 | isseti 2782 | 1 ⊢ ∃𝑤 𝑤 = ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃wex 1516 [wsb 1786 ∃*wmo 2056 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 {copab 4112 ↾ cres 4685 “ cima 4686 Fun wfun 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fun 5282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |