| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: rgen2a 2584 rgenw 2585 mprg 2587 mprgbir 2588 rgen2 2616 r19.21be 2621 nrex 2622 rexlimi 2641 sbcth2 3117 reuss 3485 ral0 3593 unimax 3921 mpteq1 4167 mpteq2ia 4169 ordon 4575 tfis 4672 finds 4689 finds2 4690 ordom 4696 omsinds 4711 dmxpid 4941 fnopab 5444 fmpti 5780 opabex3 6257 oawordriexmid 6606 fifo 7135 inresflem 7215 0ct 7262 infnninf 7279 infnninfOLD 7280 exmidonfinlem 7359 pw1on 7399 netap 7428 2omotaplemap 7431 indpi 7517 nnindnn 8068 aptap 8785 sup3exmid 9092 nnssre 9102 nnind 9114 nnsub 9137 dfuzi 9545 indstr 9776 cnref1o 9834 frec2uzsucd 10610 uzsinds 10653 ser0f 10743 bccl 10976 wrdind 11240 rexuz3 11487 isumlessdc 11993 prodf1f 12040 iprodap0 12079 eff2 12177 reeff1 12197 prmind2 12628 3prm 12636 sqrt2irr 12670 phisum 12749 pockthi 12867 1arith 12876 1arith2 12877 prminf 13012 xpsff1o 13368 rngmgpf 13886 mgpf 13960 cnfld1 14521 cnsubglem 14528 isbasis3g 14705 distop 14744 cdivcncfap 15263 dveflem 15385 ioocosf1o 15513 2irrexpqap 15637 2sqlem6 15784 2sqlem10 15789 bj-indint 16224 bj-nnelirr 16246 bj-omord 16253 012of 16288 2o01f 16289 0nninf 16301 nconstwlpolem0 16362 |
| Copyright terms: Public domain | W3C validator |