| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: rgen2a 2584 rgenw 2585 mprg 2587 mprgbir 2588 rgen2 2616 r19.21be 2621 nrex 2622 rexlimi 2641 sbcth2 3117 reuss 3485 ral0 3593 unimax 3922 mpteq1 4168 mpteq2ia 4170 ordon 4578 tfis 4675 finds 4692 finds2 4693 ordom 4699 omsinds 4714 dmxpid 4945 fnopab 5448 fmpti 5789 opabex3 6273 oawordriexmid 6624 fifo 7155 inresflem 7235 0ct 7282 infnninf 7299 infnninfOLD 7300 exmidonfinlem 7379 pw1on 7419 netap 7448 2omotaplemap 7451 indpi 7537 nnindnn 8088 aptap 8805 sup3exmid 9112 nnssre 9122 nnind 9134 nnsub 9157 dfuzi 9565 indstr 9796 cnref1o 9854 frec2uzsucd 10631 uzsinds 10674 ser0f 10764 bccl 10997 wrdind 11262 rexuz3 11509 isumlessdc 12015 prodf1f 12062 iprodap0 12101 eff2 12199 reeff1 12219 prmind2 12650 3prm 12658 sqrt2irr 12692 phisum 12771 pockthi 12889 1arith 12898 1arith2 12899 prminf 13034 xpsff1o 13390 rngmgpf 13908 mgpf 13982 cnfld1 14544 cnsubglem 14551 isbasis3g 14728 distop 14767 cdivcncfap 15286 dveflem 15408 ioocosf1o 15536 2irrexpqap 15660 2sqlem6 15807 2sqlem10 15812 bj-indint 16318 bj-nnelirr 16340 bj-omord 16347 012of 16386 2o01f 16387 0nninf 16400 nconstwlpolem0 16461 |
| Copyright terms: Public domain | W3C validator |