Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgen | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
3 | 1, 2 | mpgbir 1441 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: rgen2a 2520 rgenw 2521 mprg 2523 mprgbir 2524 rgen2 2552 r19.21be 2557 nrex 2558 rexlimi 2576 sbcth2 3038 reuss 3403 ral0 3510 unimax 3823 mpteq1 4066 mpteq2ia 4068 ordon 4463 tfis 4560 finds 4577 finds2 4578 ordom 4584 omsinds 4599 dmxpid 4825 fnopab 5312 fmpti 5637 opabex3 6090 oawordriexmid 6438 fifo 6945 inresflem 7025 0ct 7072 infnninf 7088 infnninfOLD 7089 exmidonfinlem 7149 pw1on 7182 indpi 7283 nnindnn 7834 sup3exmid 8852 nnssre 8861 nnind 8873 nnsub 8896 dfuzi 9301 indstr 9531 cnref1o 9588 frec2uzsucd 10336 uzsinds 10377 ser0f 10450 bccl 10680 rexuz3 10932 isumlessdc 11437 prodf1f 11484 iprodap0 11523 eff2 11621 reeff1 11641 prmind2 12052 3prm 12060 sqrt2irr 12094 phisum 12172 pockthi 12288 1arith 12297 1arith2 12298 prminf 12388 isbasis3g 12684 distop 12725 cdivcncfap 13227 dveflem 13327 ioocosf1o 13415 2irrexpqap 13536 2sqlem6 13596 2sqlem10 13601 bj-indint 13813 bj-nnelirr 13835 bj-omord 13842 012of 13875 2o01f 13876 0nninf 13884 nconstwlpolem0 13941 |
Copyright terms: Public domain | W3C validator |