| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | mpgbir 1467 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rgen2a 2551 rgenw 2552 mprg 2554 mprgbir 2555 rgen2 2583 r19.21be 2588 nrex 2589 rexlimi 2607 sbcth2 3077 reuss 3445 ral0 3553 unimax 3874 mpteq1 4118 mpteq2ia 4120 ordon 4523 tfis 4620 finds 4637 finds2 4638 ordom 4644 omsinds 4659 dmxpid 4888 fnopab 5385 fmpti 5717 opabex3 6188 oawordriexmid 6537 fifo 7055 inresflem 7135 0ct 7182 infnninf 7199 infnninfOLD 7200 exmidonfinlem 7274 pw1on 7311 netap 7339 2omotaplemap 7342 indpi 7428 nnindnn 7979 aptap 8696 sup3exmid 9003 nnssre 9013 nnind 9025 nnsub 9048 dfuzi 9455 indstr 9686 cnref1o 9744 frec2uzsucd 10512 uzsinds 10555 ser0f 10645 bccl 10878 rexuz3 11174 isumlessdc 11680 prodf1f 11727 iprodap0 11766 eff2 11864 reeff1 11884 prmind2 12315 3prm 12323 sqrt2irr 12357 phisum 12436 pockthi 12554 1arith 12563 1arith2 12564 prminf 12699 xpsff1o 13053 rngmgpf 13571 mgpf 13645 cnfld1 14206 cnsubglem 14213 isbasis3g 14390 distop 14429 cdivcncfap 14948 dveflem 15070 ioocosf1o 15198 2irrexpqap 15322 2sqlem6 15469 2sqlem10 15474 bj-indint 15685 bj-nnelirr 15707 bj-omord 15714 012of 15748 2o01f 15749 0nninf 15759 nconstwlpolem0 15820 |
| Copyright terms: Public domain | W3C validator |