| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2490 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 3 | 1, 2 | mpgbir 1477 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2490 |
| This theorem is referenced by: rgen2a 2561 rgenw 2562 mprg 2564 mprgbir 2565 rgen2 2593 r19.21be 2598 nrex 2599 rexlimi 2617 sbcth2 3090 reuss 3458 ral0 3566 unimax 3889 mpteq1 4135 mpteq2ia 4137 ordon 4541 tfis 4638 finds 4655 finds2 4656 ordom 4662 omsinds 4677 dmxpid 4907 fnopab 5409 fmpti 5744 opabex3 6219 oawordriexmid 6568 fifo 7096 inresflem 7176 0ct 7223 infnninf 7240 infnninfOLD 7241 exmidonfinlem 7316 pw1on 7353 netap 7381 2omotaplemap 7384 indpi 7470 nnindnn 8021 aptap 8738 sup3exmid 9045 nnssre 9055 nnind 9067 nnsub 9090 dfuzi 9498 indstr 9729 cnref1o 9787 frec2uzsucd 10563 uzsinds 10606 ser0f 10696 bccl 10929 wrdind 11193 rexuz3 11371 isumlessdc 11877 prodf1f 11924 iprodap0 11963 eff2 12061 reeff1 12081 prmind2 12512 3prm 12520 sqrt2irr 12554 phisum 12633 pockthi 12751 1arith 12760 1arith2 12761 prminf 12896 xpsff1o 13251 rngmgpf 13769 mgpf 13843 cnfld1 14404 cnsubglem 14411 isbasis3g 14588 distop 14627 cdivcncfap 15146 dveflem 15268 ioocosf1o 15396 2irrexpqap 15520 2sqlem6 15667 2sqlem10 15672 bj-indint 16001 bj-nnelirr 16023 bj-omord 16030 012of 16065 2o01f 16066 0nninf 16076 nconstwlpolem0 16137 |
| Copyright terms: Public domain | W3C validator |