![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgen | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: rgen2a 2548 rgenw 2549 mprg 2551 mprgbir 2552 rgen2 2580 r19.21be 2585 nrex 2586 rexlimi 2604 sbcth2 3074 reuss 3441 ral0 3549 unimax 3870 mpteq1 4114 mpteq2ia 4116 ordon 4519 tfis 4616 finds 4633 finds2 4634 ordom 4640 omsinds 4655 dmxpid 4884 fnopab 5379 fmpti 5711 opabex3 6176 oawordriexmid 6525 fifo 7041 inresflem 7121 0ct 7168 infnninf 7185 infnninfOLD 7186 exmidonfinlem 7255 pw1on 7288 netap 7316 2omotaplemap 7319 indpi 7404 nnindnn 7955 aptap 8671 sup3exmid 8978 nnssre 8988 nnind 9000 nnsub 9023 dfuzi 9430 indstr 9661 cnref1o 9719 frec2uzsucd 10475 uzsinds 10518 ser0f 10608 bccl 10841 rexuz3 11137 isumlessdc 11642 prodf1f 11689 iprodap0 11728 eff2 11826 reeff1 11846 prmind2 12261 3prm 12269 sqrt2irr 12303 phisum 12381 pockthi 12499 1arith 12508 1arith2 12509 prminf 12615 xpsff1o 12935 rngmgpf 13436 mgpf 13510 cnfld1 14071 cnsubglem 14078 isbasis3g 14225 distop 14264 cdivcncfap 14783 dveflem 14905 ioocosf1o 15030 2irrexpqap 15151 2sqlem6 15277 2sqlem10 15282 bj-indint 15493 bj-nnelirr 15515 bj-omord 15522 012of 15556 2o01f 15557 0nninf 15564 nconstwlpolem0 15623 |
Copyright terms: Public domain | W3C validator |