![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgen | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rgen.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
rgen | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | rgen.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: rgen2a 2548 rgenw 2549 mprg 2551 mprgbir 2552 rgen2 2580 r19.21be 2585 nrex 2586 rexlimi 2604 sbcth2 3073 reuss 3440 ral0 3548 unimax 3869 mpteq1 4113 mpteq2ia 4115 ordon 4518 tfis 4615 finds 4632 finds2 4633 ordom 4639 omsinds 4654 dmxpid 4883 fnopab 5378 fmpti 5710 opabex3 6174 oawordriexmid 6523 fifo 7039 inresflem 7119 0ct 7166 infnninf 7183 infnninfOLD 7184 exmidonfinlem 7253 pw1on 7286 netap 7314 2omotaplemap 7317 indpi 7402 nnindnn 7953 aptap 8669 sup3exmid 8976 nnssre 8986 nnind 8998 nnsub 9021 dfuzi 9427 indstr 9658 cnref1o 9716 frec2uzsucd 10472 uzsinds 10515 ser0f 10605 bccl 10838 rexuz3 11134 isumlessdc 11639 prodf1f 11686 iprodap0 11725 eff2 11823 reeff1 11843 prmind2 12258 3prm 12266 sqrt2irr 12300 phisum 12378 pockthi 12496 1arith 12505 1arith2 12506 prminf 12612 xpsff1o 12932 rngmgpf 13433 mgpf 13507 cnfld1 14060 cnsubglem 14067 isbasis3g 14214 distop 14253 cdivcncfap 14758 dveflem 14872 ioocosf1o 14989 2irrexpqap 15110 2sqlem6 15207 2sqlem10 15212 bj-indint 15423 bj-nnelirr 15445 bj-omord 15452 012of 15486 2o01f 15487 0nninf 15494 nconstwlpolem0 15553 |
Copyright terms: Public domain | W3C validator |