ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr GIF version

Theorem indstr 9667
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
Hypotheses
Ref Expression
indstr.1 (𝑥 = 𝑦 → (𝜑𝜓))
indstr.2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem indstr
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . . . . 5 (𝑧 = 1 → (𝑦 < 𝑧𝑦 < 1))
21imbi1d 231 . . . 4 (𝑧 = 1 → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < 1 → 𝜓)))
32ralbidv 2497 . . 3 (𝑧 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 1 → 𝜓)))
4 breq2 4037 . . . . 5 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
54imbi1d 231 . . . 4 (𝑧 = 𝑤 → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < 𝑤𝜓)))
65ralbidv 2497 . . 3 (𝑧 = 𝑤 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)))
7 breq2 4037 . . . . 5 (𝑧 = (𝑤 + 1) → (𝑦 < 𝑧𝑦 < (𝑤 + 1)))
87imbi1d 231 . . . 4 (𝑧 = (𝑤 + 1) → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < (𝑤 + 1) → 𝜓)))
98ralbidv 2497 . . 3 (𝑧 = (𝑤 + 1) → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓)))
10 breq2 4037 . . . . 5 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
1110imbi1d 231 . . . 4 (𝑧 = 𝑥 → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < 𝑥𝜓)))
1211ralbidv 2497 . . 3 (𝑧 = 𝑥 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓)))
13 nnnlt1 9016 . . . . 5 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
1413pm2.21d 620 . . . 4 (𝑦 ∈ ℕ → (𝑦 < 1 → 𝜓))
1514rgen 2550 . . 3 𝑦 ∈ ℕ (𝑦 < 1 → 𝜓)
16 1nn 9001 . . . . 5 1 ∈ ℕ
17 elex2 2779 . . . . 5 (1 ∈ ℕ → ∃𝑢 𝑢 ∈ ℕ)
18 nfra1 2528 . . . . . 6 𝑦𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)
1918r19.3rm 3539 . . . . 5 (∃𝑢 𝑢 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) ↔ ∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)))
2016, 17, 19mp2b 8 . . . 4 (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) ↔ ∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓))
21 rsp 2544 . . . . . . . . . 10 (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 ∈ ℕ → (𝑦 < 𝑤𝜓)))
2221com12 30 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 < 𝑤𝜓)))
2322adantl 277 . . . . . . . 8 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 < 𝑤𝜓)))
24 indstr.2 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
2524rgen 2550 . . . . . . . . . . . 12 𝑥 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑)
26 nfv 1542 . . . . . . . . . . . . 13 𝑤(∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑)
27 nfv 1542 . . . . . . . . . . . . . 14 𝑥𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)
28 nfsbc1v 3008 . . . . . . . . . . . . . 14 𝑥[𝑤 / 𝑥]𝜑
2927, 28nfim 1586 . . . . . . . . . . . . 13 𝑥(∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑)
30 breq2 4037 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
3130imbi1d 231 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝑦 < 𝑥𝜓) ↔ (𝑦 < 𝑤𝜓)))
3231ralbidv 2497 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)))
33 sbceq1a 2999 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
3432, 33imbi12d 234 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑)))
3526, 29, 34cbvral 2725 . . . . . . . . . . . 12 (∀𝑥 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ ∀𝑤 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑))
3625, 35mpbi 145 . . . . . . . . . . 11 𝑤 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑)
3736rspec 2549 . . . . . . . . . 10 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑))
38 vex 2766 . . . . . . . . . . . . 13 𝑦 ∈ V
39 indstr.1 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜓))
4038, 39sbcie 3024 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝜑𝜓)
41 dfsbcq 2991 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ([𝑦 / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
4240, 41bitr3id 194 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑥]𝜑))
4342biimprcd 160 . . . . . . . . . 10 ([𝑤 / 𝑥]𝜑 → (𝑦 = 𝑤𝜓))
4437, 43syl6 33 . . . . . . . . 9 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 = 𝑤𝜓)))
4544adantr 276 . . . . . . . 8 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 = 𝑤𝜓)))
4623, 45jcad 307 . . . . . . 7 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ((𝑦 < 𝑤𝜓) ∧ (𝑦 = 𝑤𝜓))))
47 jaob 711 . . . . . . 7 (((𝑦 < 𝑤𝑦 = 𝑤) → 𝜓) ↔ ((𝑦 < 𝑤𝜓) ∧ (𝑦 = 𝑤𝜓)))
4846, 47imbitrrdi 162 . . . . . 6 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ((𝑦 < 𝑤𝑦 = 𝑤) → 𝜓)))
49 nnleltp1 9385 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦𝑤𝑦 < (𝑤 + 1)))
50 nnz 9345 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
51 nnz 9345 . . . . . . . . . 10 (𝑤 ∈ ℕ → 𝑤 ∈ ℤ)
52 zleloe 9373 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑦𝑤 ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5350, 51, 52syl2an 289 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦𝑤 ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5449, 53bitr3d 190 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 < (𝑤 + 1) ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5554ancoms 268 . . . . . . 7 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑤 + 1) ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5655imbi1d 231 . . . . . 6 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦 < (𝑤 + 1) → 𝜓) ↔ ((𝑦 < 𝑤𝑦 = 𝑤) → 𝜓)))
5748, 56sylibrd 169 . . . . 5 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 < (𝑤 + 1) → 𝜓)))
5857ralimdva 2564 . . . 4 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓)))
5920, 58biimtrid 152 . . 3 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓)))
603, 6, 9, 12, 15, 59nnind 9006 . 2 (𝑥 ∈ ℕ → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
6160, 24mpd 13 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  [wsbc 2989   class class class wbr 4033  (class class class)co 5922  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cn 8990  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  indstr2  9683
  Copyright terms: Public domain W3C validator