| Step | Hyp | Ref
| Expression |
| 1 | | breq2 4037 |
. . . . 5
⊢ (𝑧 = 1 → (𝑦 < 𝑧 ↔ 𝑦 < 1)) |
| 2 | 1 | imbi1d 231 |
. . . 4
⊢ (𝑧 = 1 → ((𝑦 < 𝑧 → 𝜓) ↔ (𝑦 < 1 → 𝜓))) |
| 3 | 2 | ralbidv 2497 |
. . 3
⊢ (𝑧 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧 → 𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 1 → 𝜓))) |
| 4 | | breq2 4037 |
. . . . 5
⊢ (𝑧 = 𝑤 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑤)) |
| 5 | 4 | imbi1d 231 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝑦 < 𝑧 → 𝜓) ↔ (𝑦 < 𝑤 → 𝜓))) |
| 6 | 5 | ralbidv 2497 |
. . 3
⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧 → 𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓))) |
| 7 | | breq2 4037 |
. . . . 5
⊢ (𝑧 = (𝑤 + 1) → (𝑦 < 𝑧 ↔ 𝑦 < (𝑤 + 1))) |
| 8 | 7 | imbi1d 231 |
. . . 4
⊢ (𝑧 = (𝑤 + 1) → ((𝑦 < 𝑧 → 𝜓) ↔ (𝑦 < (𝑤 + 1) → 𝜓))) |
| 9 | 8 | ralbidv 2497 |
. . 3
⊢ (𝑧 = (𝑤 + 1) → (∀𝑦 ∈ ℕ (𝑦 < 𝑧 → 𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓))) |
| 10 | | breq2 4037 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑥)) |
| 11 | 10 | imbi1d 231 |
. . . 4
⊢ (𝑧 = 𝑥 → ((𝑦 < 𝑧 → 𝜓) ↔ (𝑦 < 𝑥 → 𝜓))) |
| 12 | 11 | ralbidv 2497 |
. . 3
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧 → 𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓))) |
| 13 | | nnnlt1 9016 |
. . . . 5
⊢ (𝑦 ∈ ℕ → ¬
𝑦 < 1) |
| 14 | 13 | pm2.21d 620 |
. . . 4
⊢ (𝑦 ∈ ℕ → (𝑦 < 1 → 𝜓)) |
| 15 | 14 | rgen 2550 |
. . 3
⊢
∀𝑦 ∈
ℕ (𝑦 < 1 →
𝜓) |
| 16 | | 1nn 9001 |
. . . . 5
⊢ 1 ∈
ℕ |
| 17 | | elex2 2779 |
. . . . 5
⊢ (1 ∈
ℕ → ∃𝑢
𝑢 ∈
ℕ) |
| 18 | | nfra1 2528 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓) |
| 19 | 18 | r19.3rm 3539 |
. . . . 5
⊢
(∃𝑢 𝑢 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) ↔ ∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓))) |
| 20 | 16, 17, 19 | mp2b 8 |
. . . 4
⊢
(∀𝑦 ∈
ℕ (𝑦 < 𝑤 → 𝜓) ↔ ∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓)) |
| 21 | | rsp 2544 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
ℕ (𝑦 < 𝑤 → 𝜓) → (𝑦 ∈ ℕ → (𝑦 < 𝑤 → 𝜓))) |
| 22 | 21 | com12 30 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → (𝑦 < 𝑤 → 𝜓))) |
| 23 | 22 | adantl 277 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → (𝑦 < 𝑤 → 𝜓))) |
| 24 | | indstr.2 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑥 → 𝜓) → 𝜑)) |
| 25 | 24 | rgen 2550 |
. . . . . . . . . . . 12
⊢
∀𝑥 ∈
ℕ (∀𝑦 ∈
ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) |
| 26 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) |
| 27 | | nfv 1542 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓) |
| 28 | | nfsbc1v 3008 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝜑 |
| 29 | 27, 28 | nfim 1586 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓) → [𝑤 / 𝑥]𝜑) |
| 30 | | breq2 4037 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑤)) |
| 31 | 30 | imbi1d 231 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → ((𝑦 < 𝑥 → 𝜓) ↔ (𝑦 < 𝑤 → 𝜓))) |
| 32 | 31 | ralbidv 2497 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓))) |
| 33 | | sbceq1a 2999 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) |
| 34 | 32, 33 | imbi12d 234 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ (∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓) → [𝑤 / 𝑥]𝜑))) |
| 35 | 26, 29, 34 | cbvral 2725 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
ℕ (∀𝑦 ∈
ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑) ↔ ∀𝑤 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑤 → 𝜓) → [𝑤 / 𝑥]𝜑)) |
| 36 | 25, 35 | mpbi 145 |
. . . . . . . . . . 11
⊢
∀𝑤 ∈
ℕ (∀𝑦 ∈
ℕ (𝑦 < 𝑤 → 𝜓) → [𝑤 / 𝑥]𝜑) |
| 37 | 36 | rspec 2549 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → [𝑤 / 𝑥]𝜑)) |
| 38 | | vex 2766 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 39 | | indstr.1 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 40 | 38, 39 | sbcie 3024 |
. . . . . . . . . . . 12
⊢
([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 41 | | dfsbcq 2991 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ([𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)) |
| 42 | 40, 41 | bitr3id 194 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑥]𝜑)) |
| 43 | 42 | biimprcd 160 |
. . . . . . . . . 10
⊢
([𝑤 / 𝑥]𝜑 → (𝑦 = 𝑤 → 𝜓)) |
| 44 | 37, 43 | syl6 33 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → (𝑦 = 𝑤 → 𝜓))) |
| 45 | 44 | adantr 276 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → (𝑦 = 𝑤 → 𝜓))) |
| 46 | 23, 45 | jcad 307 |
. . . . . . 7
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → ((𝑦 < 𝑤 → 𝜓) ∧ (𝑦 = 𝑤 → 𝜓)))) |
| 47 | | jaob 711 |
. . . . . . 7
⊢ (((𝑦 < 𝑤 ∨ 𝑦 = 𝑤) → 𝜓) ↔ ((𝑦 < 𝑤 → 𝜓) ∧ (𝑦 = 𝑤 → 𝜓))) |
| 48 | 46, 47 | imbitrrdi 162 |
. . . . . 6
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → ((𝑦 < 𝑤 ∨ 𝑦 = 𝑤) → 𝜓))) |
| 49 | | nnleltp1 9385 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ≤ 𝑤 ↔ 𝑦 < (𝑤 + 1))) |
| 50 | | nnz 9345 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 51 | | nnz 9345 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℕ → 𝑤 ∈
ℤ) |
| 52 | | zleloe 9373 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑦 ≤ 𝑤 ↔ (𝑦 < 𝑤 ∨ 𝑦 = 𝑤))) |
| 53 | 50, 51, 52 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ≤ 𝑤 ↔ (𝑦 < 𝑤 ∨ 𝑦 = 𝑤))) |
| 54 | 49, 53 | bitr3d 190 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 < (𝑤 + 1) ↔ (𝑦 < 𝑤 ∨ 𝑦 = 𝑤))) |
| 55 | 54 | ancoms 268 |
. . . . . . 7
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑤 + 1) ↔ (𝑦 < 𝑤 ∨ 𝑦 = 𝑤))) |
| 56 | 55 | imbi1d 231 |
. . . . . 6
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦 < (𝑤 + 1) → 𝜓) ↔ ((𝑦 < 𝑤 ∨ 𝑦 = 𝑤) → 𝜓))) |
| 57 | 48, 56 | sylibrd 169 |
. . . . 5
⊢ ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → (𝑦 < (𝑤 + 1) → 𝜓))) |
| 58 | 57 | ralimdva 2564 |
. . . 4
⊢ (𝑤 ∈ ℕ →
(∀𝑦 ∈ ℕ
∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓))) |
| 59 | 20, 58 | biimtrid 152 |
. . 3
⊢ (𝑤 ∈ ℕ →
(∀𝑦 ∈ ℕ
(𝑦 < 𝑤 → 𝜓) → ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓))) |
| 60 | 3, 6, 9, 12, 15, 59 | nnind 9006 |
. 2
⊢ (𝑥 ∈ ℕ →
∀𝑦 ∈ ℕ
(𝑦 < 𝑥 → 𝜓)) |
| 61 | 60, 24 | mpd 13 |
1
⊢ (𝑥 ∈ ℕ → 𝜑) |